
Research Collection

Master Thesis

Runtime Verification with TeSSLa on Enzian

Author(s):
Schmid, Pirmin

Publication Date:
2019

Permanent Link:
https://doi.org/10.3929/ethz-b-000362312

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-b-000362312
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Master’s Thesis Nr. 245

Systems Group, Department of Computer Science, ETH Zurich

Runtime Verification with TeSSLa on Enzian

by

Pirmin Schmid

Supervised by

Prof. Timothy Roscoe, Dr. David Cock

February 2019 – August 2019

Abstract

Runtime verification (RV) is a methodology to verify whether the behaviour of a (soft-
ware) system satisfies the defined properties of a specification. This is of interest
for safety-critical reactive systems. Multiple temporal logic systems, specification lan-
guages, and complete RV systems have been developed. Many of them work offline
on collected program traces or logs.

Program traces of ARM CPUs can be accessed at runtime with the ARM CoreSight
infrastructure. Other chip architectures offer similar trace functionality. High band-
width requirements limit the amount of trace data that can be processed at runtime.

Field Programmable Gate Arrays (FPGA) can process data with high throughput.
CPU/FPGA hybrid systems (like the Xilinx Zynq-7000 SoC with 2 ARMv7 cores)
allow direct access to this CS trace on the FPGA. The new Enzian system of the Sys-
tems Group at ETH Zürich, which is under development, combines a server-grade
48 core Cavium, now Marvell, ThunderX SoC with a Xilinx Virtex UltraScale+ FPGA
that are connected via cache coherency protocol on the last level cache (LLC) of the
ThunderX.

The recently published Temporal Stream-based Specification Language (TeSSLa) is
designed to allow processing on data streams, which is in particular suitable for data
processing on FPGA. A prototype TeSSLa to Verilog compiler via Chisel – developed
at the Institut für Softwaretechnik und Programmiersprachen, Universität zu Lübeck,
Germany – could be used in this project to build a new RV system.

This new RV system parses CS traces (new modules written in VHDL) and evalu-
ates them with the embedded TeSSLa specification on FPGA, which allows online
runtime verification of programs. An additional instrumentation library for glibc
functions and incorporation of signals of the FPGA allow writing specifications even
for CPU/FPGA hybrid applications. The instrumentation library wraps the program
at load-time. Thus, no source code is required for the program-under-test.

The evaluation of the system includes runtime verification of 3 specifications in differ-
ent application domains: 1) memory allocation (all allocated memory is deallocated);
2) event handler (maximum queueing time); 3) access to critical sections protected
with locks in multi-threaded programs. Test programs were written to satisfy and
violate the properties of the specifications. All evaluations were correct.

The system is compared with existing RV solutions in the thesis.

The prototype system on the Zynq board could not yet be transferred to the Enzian
system due to external delays. A clear upgrade path for Enzian is described.

A critical bottleneck could be removed during this project. The TeSSLa InputAdapter
could accept one multiplexed input channel, which required merging of all input
streams. It could be extended to accept multiple such inputs from different sources
in parallel. This required writing a timestamp driver to keep the TeSSLa computation
network running. Removing this merge bottleneck has been crucial to scale the RV
solution to multi-core systems like Enzian or even rack-scale runtime verification.

i

Acknowledgment

I would like to thank my advisors Dr. David Cock and Professor Dr. Timothy Roscoe of
the Systems Group at ETH Zürich. Working in their team has been a dream come true. I
appreciate the discussions, advice and feedback during the project, and the many things
I could learn, not only on technical things.

I am very grateful for the excellent collaboration with Malte Schmitz and Daniel Thoma,
Institut für Softwaretechnik und Programmiersprachen, Universität zu Lübeck, Germany.
I appreciate the interesting Skype discussions during the semester and their testing of the
prototype also on their board.

I dedicate this thesis to my parents. I am very grateful for the support.
I hope to get close to your wisdom sometime in life.

iii

Contents

List of Figures viii

List of Tables ix

Listings x

1 Introduction 1
1.1 Focus . 2
1.2 Main contributions . 2
1.3 Thesis layout . 3

2 Background 5
2.1 Runtime verification . 5
2.2 ARM CoreSight . 6
2.3 TeSSLa: Temporal Stream-based Specification Language 7
2.4 CPU/FPGA hybrid systems . 8

2.4.1 FPGA characteristics that affect the design of the RV system 8
2.4.2 Zynq board . 9
2.4.3 Enzian system . 9

2.5 Instrumentation . 10

3 Related Work 13
3.1 Existing tracing and runtime verification infrastructure 13
3.2 TeSSLa implementations . 13
3.3 Other CPU/FPGA hybrid implementations 14
3.4 Other runtime verification systems . 15
3.5 Other verification systems . 15

4 Design 17
4.1 Design overview . 17
4.2 FPGA: design constraints and design decisions 17
4.3 Online and distributed runtime verification 19
4.4 AXI/TPIU controller and driver . 20
4.5 CoreSight parsers . 20

v

Contents

4.6 Timestamp driver and interface to TeSSLa . 20
4.7 TeSSLa specification . 21
4.8 Software tooling . 24
4.9 Instrumentation library . 24

5 Implementation 25
5.1 CoreSight parsers . 25

5.1.1 CS frame synchronizer and parser . 25
5.1.2 PTM parser . 26
5.1.3 ITM parser . 27
5.1.4 FTM parser . 27

5.2 Timestamp driver . 27
5.3 TeSSLa specification . 29

5.3.1 Some technical details of the inner working of TeSSLa on FPGA . . 29
5.3.2 TeSSLa compiler . 30
5.3.3 MultiInputAdapter . 30
5.3.4 OutputFilterAdapter . 31

5.4 AXI/TPIU controller and driver . 31
5.5 Software tooling . 31
5.6 Instrumentation library . 32

6 Evaluation and Benchmarking 33
6.1 Methods . 33

6.1.1 CoreSight configuration . 33
6.2 CS parser validation . 34
6.3 Instrumentation validation and benchmarking 35

6.3.1 Validation . 35
6.3.2 Benchmarking . 37

6.4 Runtime verification with TeSSLa specifications 40
6.5 Summary . 48

7 Discussion 49
7.1 Instrumentation overhead . 49
7.2 Limitations of the TeSSLa compiler prototype 49
7.3 Related work . 51
7.4 Future work . 52

7.4.1 Runtime verification of CPU/FPGA hybrid applications 52
7.4.2 Migration path to ThunderX / Enzian 52
7.4.3 TeSSLa to Verilog compiler . 53

8 Conclusion 55

Appendices 55

A Reference TeSSLa Interfaces 57

B TeSSLa Language Snippets 61

vi

Contents

C Timestamp Driver 65

D trace launch Options 71

E Instrumentation Library 73

F Programs for Trace Validation 75

Bibliography 79

vii

List of Figures

2.1 Runtime verification . 5
2.2 ARM CoreSight on Zynq board . 6

4.1 FPGA modules: design overview . 18
4.2 A simple TeSSLa computation network (Listing F.2) 21
4.3 Count macro: computation network (Listing 4.1) 22
4.4 TeSSLa computation network with unrolled map of capacity 8 23

5.1 Data flow in PTM parser . 26

6.1 Experiment 6: trace density plots of instrumented and non-instrumented (base-
line) program traces . 37

viii

List of Tables

2.1 Instrumentation opportunities . 10

4.1 FPGA modules: clock frequencies and associated bandwidths 19

5.1 Multiplexed CS streams in frames: IDs used in CS configuration 26
5.2 Encoding of multiplexed TeSSLa event tuples (input / output) 29

6.1 Runtime verification with TeSSLa specifications: overview 41
6.2 Summary: instrumentation overhead . 48

ix

Listings

4.1 TeSSLa: count macro from stdlib . 21
6.1 Filter macro . 37
6.2 Memory allocation . 41
6.3 Event handler: queueing time property, simple 42
6.4 Event handler: queueing time property, advanced 43
6.5 Critical section protected by lock . 46
A.1 TeSSLa interface: reference input interface 57
A.2 TeSSLa interface: instrumentation library reference mapping 59
A.3 TeSSLa interface: reference output interface 60
B.1 TeSSLa: helper predicates . 61
B.2 TeSSLa: function call() macro . 62
B.3 TeSSLa: fixed-capacity set . 63
B.4 TeSSLa: fixed-capacity map . 64
C.1 Timestamp driver . 65
D.1 trace launch options . 71
F.1 Test program: nested malloc . 75
F.2 Relevant TeSSLa snippet used for nested malloc 76

x

Chapter 1

Introduction

Runtime verification (RV) is a methodology to verify whether the behaviour of a system,
e.g. a running software program, satisfies the defined properties of a specification [25].
This is of interest for safety-critical reactive systems as used in many embedded systems
in cars, aeroplanes, or medical devices [27, 32]. Multi-core CPUs add to the complexity of
possible system behaviours.

Other applications can be found in system security, in particular if users are allowed to
execute foreign code, or many users are sharing the same computing infrastructure, e.g.
in the cloud [24]. Deviations from specified patterns should be recognised as early as
possible, or better prevented.

Runtime verification comes with a computational overhead that depends on various fac-
tors, e.g. the complexity of the specification. Due to this complexity, such verification
can happen offline by analysis of logs or program traces. For many applications, online
verification is desired while the system is running.

On ARM CPUs, the CoreSight (CS) infrastructure offers access to program traces at run-
time, which can be processed by different cores of the same machine, or a different ma-
chine. However, program traces of CPUs can have large bandwidth requirements. Al-
ready a relatively slow Xilinx Zynq board (2 ARM cores at 1 GHz) can generate highly
compressed raw processor traces at 260 MB/s (or more if additional options are activated).

Required bandwidth increases with more cores and higher clock frequency as e.g. in
the 48 core Cavium, now Marvell, ThunderX SoC used in the new Enzian platform [16].
Scaling a runtime verification solution to a rack of fast servers with many cores creates
severe bottlenecks if trace data cannot be processed early to reduce the data stream to
relevant specification-defined signals [9].

Hybrid CPU/FPGA systems, such as the Zynq board or the Enzian system, provide an
opportunity to implement the runtime verification in the Field Programmable Gate Array
(FPGA). This allows direct local processing and data reduction without adding load to the
CPUs. FPGA systems are well-suited for processing of data streams with high throughput
if designed well [28].

1

1. Introduction

The recently published Temporal Stream-based Specification Language (TeSSLa)1 [10, 11]
was chosen to be combined with a new CoreSight trace parser for FPGA, that was created
in this thesis, to build a RV system for CPU/FPGA hybrids.

1.1 Focus

While the CoreSight ROM can be read on the ThunderX SoC, chip configuration itself –
such as which cores to be traced – depends on a proprietary non-standard system. The
ARM trusted firmware (ATF) for the SoC needs to be patched and a specific library needs
to be used for configuration and to read traces. We did not get this patch and library until
4 months of this 6 month project have passed by. Additionally, several needed software
and hardware components for the Enzian system are not yet available.

Due to these external circumstances and in accordance with the thesis supervisors, the
focus of this thesis has been shifted from a direct implementation for the future Enzian
system to a prototype on a Zynq board. This prototype provided the opportunity to solve
many problems that are identical for the Enzian CPU/FPGA hybrid system.

The current system is fully functional on the Zynq board to parse CS traces and process
them according to embedded TeSSLa specification on the FPGA board. The prototype
could also be used on a Zed board by our colleagues in Lübeck.

Several key elements are prepared for Enzian. A clear upgrade path to Enzian is described
in this thesis.

1.2 Main contributions

During the 6 months of this thesis project, a working system could be built for runtime
verification of arbitrary binary programs running in a current Linux environment using
a new CoreSight parser implementation in FPGA integrated with a TeSSLa specification
processed in FPGA. The solution includes observation of long running multi-threaded
programs, optional instrumentation of already compiled and linked programs, and con-
tributes several insights in programming TeSSLa specifications.

The existing input interface for TeSSLa was expanded to accept multiple inputs in parallel.
This is a critical step to scale TeSSLa to high bandwidth inputs of multiple program traces
of a server-grade multi-core SoC like ThunderX. This extension could be accomplished
with a new timestamp driver for the TeSSLa computation network.

The instrumentation library uses ITM stimuli of the CoreSight system. The ARM CS
access library was extended to also integrate stimuli from FPGA into the CS stream (FTM),
which is beneficial for CPU/FPGA hybrid applications. This additional data can be used
to write more complex TeSSLa specifications. Several new TeSSLa macros were designed
to accomplish these specifications.

Various examples were tested to illustrate runtime verification with this new system.

1 TeSSLa has been developed at the Institut für Softwaretechnik und Programmiersprachen, Universität
zu Lübeck, Germany; https://www.tessla.io for information, documentation, and an online playground
to test specifications

2

https://www.tessla.io

1.3. Thesis layout

1.3 Thesis layout

Chapter 2 gives relevant background information for this thesis, and chapter 3 discusses
related work. The design and implementation of the new RV system is shown in chapters
4 and 5, respectively.

The complete system is evaluated and benchmarked in chapter 6. This includes runtime
verification of 3 properties in different application domains using TeSSLa specifications.

• Memory allocation: all allocated memory is deallocated

• Event handler: maximum queueing time

• Locks: access to critical section protected

The discussion (chapter 7) compares the results with related work, discusses current lim-
itations and possible solutions, suggests future work, and in particular describes an up-
grade path to a ThunderX / Enzian system. Chapter 8 concludes the thesis. The appen-
dices give additional detail information.

3

Chapter 2

Background

2.1 Runtime verification

Runtime verification (RV) is a methodology to verify whether the behaviour of a sys-
tem, e.g. a running software program, satisfies the defined properties of a specification
(Figure 2.1). Output can be as simple as a boolean flag whether the trace satisfies the spec-
ification so far or a violation has been observed. In particular with advanced specification
languages like TeSSLa, outputs can be arbitrarily detailed.

Figure 2.1: Runtime verification

Runtime verification must be distinguished from other forms of software verification like
formal program verification with theorem provers, model checking, or static analysis of
programs [20, 25]. The formal verification of the seL4 kernel is an excellent example of
such a formal verification effort [23]. These methods aim to guarantee adherence to the
given specification for all possible program traces. In contrast, runtime verification can
only verify the program traces that are effectively observed at runtime.

However, there is a second side to this. Formal verification must assume an underlying
execution model for the program to be correct. Runtime verification can detect violations

5

2. Background

against the specifications in case of bugs in this underlying execution model or attacks
against the system, which may affect even theoretically correct/verified programs. Thus,
there is a need for both types of verification [17].

Program testing (e.g. test-driven development and also fuzzing tools) is another method
to reduce the amount of errors in a program. However, ”Testing shows the presence, not
the absence of bugs” (quote from E. W. Dijkstra 1969 in [13]). There are conceptually in-
herent false-negatives in testing and false-positives in static analysis. Runtime verification
can be combined with test cases or even fuzzing tools during development that explore a
wide range of program behaviour.

Historical note: Conceptually, runtime verification is not restricted to software, and a wide
definition of this concept has been used with other names as long back as humans have
used tools. However, runtime verification has been formally defined now, and multiple
logic system and specification languages / frameworks have been developed [25]. Various
RV systems are discussed in section 2.3 and chapter 3.

2.2 ARM CoreSight

ARM processors are designed to offer trace information at runtime that can be used
for debugging and verification: ARM CoreSight architecture [2, 5]. Such traces are also
available for other CPU architectures, e.g. Intel Processor Trace [21].

The CoreSight (CS) system offers configuration options to select data sources (e.g. pro-
gram trace of one or several CPU cores) and output sinks to read the data (Figure 2.2). An
open source library, CoreSight Access Library (CSAL), is available for configuration [6].
Another library, OpenCSD, can be used to parse raw traces [26].

Figure 2.2: ARM CoreSight on Zynq board

6

2.3. TeSSLa: Temporal Stream-based Specification Language

The number and type of sources and sinks differ for different platforms. A Program
Trace Macrocell (PTM) offers the program trace of a CPU core. Many systems offer an
Instrumentation Trace Macrocell (ITM) that can be used to send values as software stimuli
into the CS trace [2]. This system is used for the instrumentation library in this project.
The Embedded Trace Buffer (ETB) is 4 KiB large and can be used to cache trace data of
short programs.

In addition to other ARM SoC, the Xilinx Zynq board offers a source input that can be
used by the FPGA to send values into the CS trace: Fabric Trace Monitor (FTM) [35]. The
board also adds a second output: a Trace Port Interface Unit (TPIU). This interface is
available in the FPGA via EMIO interface. It is used to read the raw trace for processing
on the FPGA.

Trace data is highly compressed. The trace parser is expected to maintain an internal
state to be able to decompress data such as sent address values. Typically, an ARM target
system is debugged using a separate device,1 that is connected with the target system via
JTAG and with the host computer via USB or network connection. The entire source and
binary codes are available on the host computer. Using the control flow graph (CFG) of
the program, the debugger on the host computer can fully restore the program execution
for arbitrary programs based on the compressed trace stream.

I refer to the online available documentation by ARM and Xilinx for the details of the
binary formats of frame and packets that were used to write the CS parsers: Frame (Trace
formatter, [5]), PTM [3], ITM [2], FTM [35].

Standard CS systems can be configured using CSAL. The CS ROM of the SoC provides
key information needed for configuration.

The outside interface of the ThunderX CS system follows the CS standard, which can be
read from the embedded CS ROM in the SoC. However, the internal configuration – e.g.
which of the 48 cores to be active sources – is non-standard and proprietary.

2.3 TeSSLa: Temporal Stream-based Specification Language

Various specification languages and logic systems have been developed that can be used
for runtime verification [25].

A formula written in linear temporal logic (LTL) can be translated into a Büchi automaton.
This is used to analyse the collected program trace to determine whether the program
execution satisfies the specification or violates it. Due to the complexity of these automata,
this analysis typically happens offline after program execution; example [29].

The Temporal Stream-based Specification Language (TeSSLa) [10], developed at the In-
stitut für Softwaretechnik und Programmiersprachen, Universität zu Lübeck, Germany,
offers an excellent option to write more complex specifications than with LTL. It was
designed for specifying and analysing the behaviour of cyber-physical systems, where
timing is a critical issue [10]. It is in particular well-suited for specifications in asyn-

1 e.g. ARM DSTREAM: https://www.arm.com/products/development-tools/debug-probes/dstream,
or an In-Circuit Emulator (ICE)

7

https://www.arm.com/products/development-tools/debug-probes/dstream

2. Background

chronous settings. Time can be quantified and thus specific constraints be expressed in
the language [10].

It extends a former language LOLA [12, 14] that introduced the idea of stream-based
runtime verification and stream transformations specified via recursive equations [11].
TeSSLa extends these concepts from synchronous to additionally asynchronous events [11].

TeSSLa is well suited to run on FPGAs thanks to its design to process event streams in
parallel. In principle, each event consists of a (timestamp, data value) tuple. In contrast
to data stream processing systems, e.g. used for database applications [8, 28], timestamps
are an integral and critical part of each event.

The implemented TeSSLa computation network (examples shown in Figures 4.2 to 4.4)
needs monotonically increasing timestamps on all inputs to make progress. This led to
subtle details that needed to be considered when the InputAdapter with one input was
extended to handle multiple inputs without need to merge all data streams before input
to TeSSLa network (implementation in subsection 5.2).

TeSSLa already had working implementations before the start of this project: 1) software
implementation written in Scala that can be tested in an online playground, too; 2) an
implementation in FPGA that differs from the implementation in this project. These
implementations are described in section 3.2 (chapter Related Work).

Alternative use case

Additionally, trace information cannot only be used for verification or security purpose
but also for resource monitoring and management. Such monitoring and decision algo-
rithms can be written in TeSSLa for local data reduction and just forwarding of occasional
management signals.

2.4 CPU/FPGA hybrid systems

2.4.1 FPGA characteristics that affect the design of the RV system

Data can be processed with high throughput and low energy consumption with a Field
Programmable Gate Array (FPGA). However, specific characteristics need to be consid-
ered to achieve that goal [28]:

• relatively low clock frequency

• very wide data bus widths can be used

• parallel processing of multiple data streams

• clock frequency limited by longest path between registers (key words: setup time,
combinational logic, holding time)

Therefore, computations need to be split into smaller processing steps that are connected
together in a pipeline to achieve high clock frequencies.

Additionally, data should be processed in parallel. However, the design must assure that
packets – that were processed in parallel by different parsers with different numbers of

8

2.4. CPU/FPGA hybrid systems

processing steps – remain synchronised as input for the downstream application such as
the TeSSLa processing network. This was achieved by using an internal clock in the RV
system that assigns a timestamp to CS frames in the module that reads the raw CS trace
from the TPIU port.

2.4.2 Zynq board

A Xilinx ZC706 evaluation board for the Zynq-7000 XC7Z045 SoC2 (short Zynq board;
technical reference documentation [35, 36]) was used in this project. It integrates a process-
ing system (PS; ARM Cortex A9 based application processor unit with 2 cores; ARMv7-A
architecture; 1 GHz) and a programmable logic (PL; fabric, FPGA; speed grade -2) on a
single die. Each side has 1 GB of RAM available.

The FPGA can access the ARM CoreSight stream of the PS via TPIU interface. Addition-
ally, it can embed signals into the CS stream via FTM. The AMBA AXI interface was used
to control the FPGA from a linux kernel module that provides a character device.

The system was configured to boot a Xilinx specific Linux kernel 4.4-xilinx3 and an
Ubuntu 18.04 LTS user environment. The kernel was compiled with the option to write
processID into the Context ID register (CONTEXTIDR) using 24 bits above the 8 bit
ASID).4

The system was accessed via SSH in the local network.

2.4.3 Enzian system

Enzian is a new CPU/FPGA hybrid platform that is being developed by the Systems
Group at ETH Zürich [16]. It integrates a 48 core server-class ARM processor (Cavium,
now Marvell, ThunderX5) with a large and fast FPGA (Xilinx Virtex UltraScale+6 XCVU9P;
speed grade -3).

ThunderX has a native interconnect for the cache coherency protocol that can connect two
ThunderX in separate sockets at the last level cache (LLC). In Enzian, this interconnect
is used to connect a ThunderX with the FPGA. FPGA modules are being developed in
the group to enable this protocol on the FPGA. This interconnect enables a low-latency,
high-bandwidth connection between both components in this CPU/FPGA hybrid system.

Enzian is an ideal platform to evaluate TeSSLa style runtime verification on realistic server
and data center workloads.

Mainly due to lack of software support for the ThunderX CoreSight system with non-
standard and proprietary configuration (section 1.1) the current RV system could not be
developed for Enzian prototypes.

2 https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
3 https://github.com/Xilinx/linux-xlnx; tag xilinx-v2016.2; this older kernel was used because a

newer kernel matching the Vivado 2018.1 suite was not stable with occasional freezes.
4 original kernel patch introducing this: http://lists.infradead.org/pipermail/linux-arm-kernel/

2011-July/057932.html
5 https://www.marvell.com/server-processors/thunderx-arm-processors/
6 https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale.html

9

https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://github.com/Xilinx/linux-xlnx
http://lists.infradead.org/pipermail/linux-arm-kernel/2011-July/057932.html
http://lists.infradead.org/pipermail/linux-arm-kernel/2011-July/057932.html
https://www.marvell.com/server-processors/thunderx-arm-processors/
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale.html

2. Background

2.5 Instrumentation

Instrumentation of programs can provide crucial additional information needed by the
verification specification, such as memory location allocated by malloc() and released
by free(), or mutex and thread identifiers for locks. Additionally, it may be required to
send tag IDs into the instrumentation stream to follow data processing e.g. in distributed
systems.

Table 2.1: Instrumentation opportunities

Type Comment

source code a direct call of instrumented functions
compile time a,c program transformation e.g. with LLVM tooling
link time b use link flags to define specific wrapper functions
load time with dynamic linking d use LD PRELOAD to dynamically wrap functions

a requires source code
b requires source code or at least unlinked objects
c e.g. implemented in [29] using the CONTEXTIDR register for instrumentation data
d only possible for functions of other dynamically linked libraries (.so)

There are various options to instrument a program (Table 2.1). The new instrumenta-
tion library of this project provides source code and load time instrumentation. It also
allows a combination of both, i.e. function instrumentation via load time instrumentation
and sending of additional signals via manual call of the signal function e.g. for debug
purposes. It can be used for compile time and link time instrumentation with small
modifications.

Different channels can be used to encode the instrumentation data. The CONTEXTIDR

register works well for bare-metal program execution [29]. On Linux, this register cannot
be modified directly from user space. Modifying the CONTEXTIDR register via kernel can
be accomplished by a kernel patch providing an additional syscall or as piggy-back of an
existing syscall [31], or by a kernel module that provides a device with such an ioctl()

function7.

For this project, it was advantageous to activate the ARM Instrumentation Trace Macrocell
(ITM) [2] and send instrumentation data as ITM stimuli, which are parsed in the FPGA
by a specific ITM parser. Advantages: 1) data is written to a memory-mapped register,
which does not require a syscall; 2) no interference with the CONTEXTIDR register, that is
already used to track processID and threadIDs of the test program.

When ITM signals worked so well, it made sense to write a Xilinx specific extension for
the ARM CoreSight access library (CSAL) [6] that activates the Fabric Trace Macrocell
(FTM) [35] too, which allows sending signals from the FPGA side into the same CS data
stream. This is useful for CPU/FPGA hybrid applications either for debug purpose or
runtime verification.

7 contextid writer kernel module for the zc706 platform in the ”not used container” of the Tracing
Master repo.

10

2.5. Instrumentation

Instrumentation comes with overhead cost that is evaluated for the used instrumentation
system. ETMv4 [4] offers the option to embed a data stream in addition to the program
trace. Thus, separate instrumentation may become less relevant on such SoC at the cost of
larger bandwidth requirements for the CS stream and more complex parser logic on the
FPGA. Dependent on the specific requirements, an additional instrumentation pathway
may still be beneficial to encode arbitrary signals independently of program and data
traces.

11

Chapter 3

Related Work

3.1 Existing tracing and runtime verification infrastructure

The current project builds on the already existing infrastructure in the Systems Group to
collect raw CS traces via ETB and TPIU (chapters 4 and 5).

In an earlier MSc thesis, CS traces could be collected and verified against a specification in
past-time linear temporal logic (ptLTL) [29]. CS traces were collected via JTAG interface
form a Panda board using DSTREAM and ARM DS-5 infrastructure. Traces were parsed
in software. ptLTL formulas were compiled to Büchi automata, which were used for
verification of traces.

The instrumentation library was attached via code transformation during compilation
using LLVM. Instrumentation signals were sent to the CS trace via CONTEXTIDR register
modifications (mcr and isb instructions).

3.2 TeSSLa implementations

There is a software reference implementation of TeSSLa that has been used for various
projects [10]. The playground on https://www.tessla.io offers several examples and
interactive exploration of the language.

There already exists an FPGA implementation of TeSSLa that can handle a limited subset
of the language (COEMS project) [11]. To avoid time consuming re-synthesis of a specifi-
cation for FPGA, this solution embeds multiple modules (processing units) in FPGA that
can be reconnected quickly. This solution is proprietary and closed source. No details on
inner working or detailed limitations of the system could be read in the literature nor be
provided by our collaboration partners.

In contrast, the new FPGA implementation in this project aims to re-synthesize each
TeSSLa specification for FPGA and embed it directly with the CS parser system with the
goal to allow more complex specifications and higher bandwidth. This is advantageous
for multi-core systems and even rack-scale runtime verification. In addition, this system
is planned to become open source.

13

https://www.tessla.io

3. Related Work

Even without knowledge of the inner workings of the already existing FPGA solution, it
is easy to deduce for a given FPGA with limited resources: more complex specifications
and/or more bandwidth for the raw CS trace can be achieved with a specialised solution
for one TeSSLa specification than a generic system that can be readjusted for multiple
specifications on the fly.

One specification expressed in concrete Verilog modules offers more optimization options
to the Vivado synthesis and implementation routines (e.g. place and route) than a set of
independent generic modules that are re-wired for new specifications.1 This advantage
can be enhanced by future TeSSLa compilers that will optimize already before Verilog
code generation (section 7.2 for suggestions).

Creating a specialised FPGA implementation for each specification comes at a cost: syn-
thesis of a bit file takes about 20-30 minutes with Vivado 2018.1 on an Intel Core i7-8750H
2.2 GHz with 32 GB DDR4 RAM and SSD. Thus, both types of FPGA implementations of
TeSSLa make sense in different application scenarios.

3.3 Other CPU/FPGA hybrid implementations

An FPGA assisted instrumentation of programs running on Linux adds an additional
syscall to the Linux kernel to send instrumentation signals to the CS trace [31]. Instru-
mentation data is embedded into the CONTEXTIDR register similar to the solution used
in [29]. A syscall is needed because the required assembly instructions (mcr and isb)
cannot be used in user mode. The FPGA part parses the CS stream from TPIU. However,
no other trace data is used in the publication. Instrumentation overhead is reported as
30 µs with the syscall.2 In case another syscall can be instrumented, a piggy-back instru-
mentation can be used by patching this syscall, which reduces the measured overhead to
0.014 µs.

CS program traces have been used to integrate monitoring for Code Reuse Attacks (CRA)
into CPU/FPGA hybrid systems [24]. In addition to the program trace, memory access
needs to be observed in the FPGA, which is not (yet) implemented in the solution pre-
sented in this thesis. ROP and JOP attacks can be detected implementing known algo-
rithms for this purpose.

In a presentation, a CS frame parser is described [30]. No additional processing of CS
macrocell data is described.

1 Please note: complexity can be achieved by a generic solution as well by e.g. running an instruc-
tion script step by step. However, this reduces the bandwidth for the raw CS trace. The advantage: new
specifications can be loaded quickly.

2 A Zed board was used in the paper with 2 ARM cores at 667 MHz using a Yocto Linux kernel version
≥ 4.9. For comparison with measured data in the evaluation part of this thesis, the overhead of a syscall was
tested on the used Zynq board with the Xilinx kernel 4.4, too. Here it was 0.43 µs. This large difference is
not explained by slower clock frequency of the board alone. Dependent on which kernel was used precisely
in [31] patches against speculative execution side-channel attacks and other factors could play a role, too.

14

3.4. Other runtime verification systems

3.4 Other runtime verification systems

Due to processing overhead, several solutions connect the target SoC under test with ex-
ternal computers or specialised devices. This category includes solutions that connect
the DSTREAM device to the JTAG output of the board, e.g. the already discussed solu-
tion [29].

A solution uses an external emulator that is synced with the target SoC [7]. The FPGA
emulator (or ASIC for faster target SoC) is connected with the target SoC and emulates
all CPU cores, all bus master interfaces and the memory of the target SoC. This reduces
the processing overhead that needs to be done on the computer used for analysis of the
data.

Signal temporal logic (STL) assertions have been translated to monitors / runtime verifi-
cation systems running on FPGA [22]. Several signals from external hardware were used
for evaluation. Due to the hardware specific setting, the system was restricted to past and
bounded future temporal operators interpreted over discrete time.

Many solutions have been described for pure software solutions, e.g. [19]. Many RV
frameworks have been created, as e.g. listed in [25].

TeSSLa must not be confused with TESLA [1], Temporally Enhanced System Logic As-
sertions, a different RV tool that allows users to insert assertions into a program to test
various properties.

3.5 Other verification systems

Runtime verification needs to be distinguished from other forms of verification, such as
formal verification with theorem provers or static analysis tools. These types of verifica-
tion offer different advantages and disadvantages [17]. As discussed in section 2.1, there
is a need for both types of verification.

15

Chapter 4

Design

4.1 Design overview

The full runtime verification infrastructure of this project consists of two parts:

• FPGA: CS parsers, timestamp driver, and TeSSLa specification are embedded in an
AXI/TPIU controller module

• Software: TeSSLa to Verilog compiler via Chisel, Linux drivers to configure CS and
AXI/TPIU module, launch programs, parse output, and test/helper programs

The overall design of the FPGA modules is shown in Figure 4.1. Three clock domains are
used: AXI/TPIU controller 200 MHz, CS parser modules 125 MHz, TeSSLa specification
50 MHz. These frequencies were deduced by the design constraints discussed below.
Data streams are connected across clock domains with asynchronous FIFOs. Some use
input:output width ratios of 2:1 to achieve higher bandwidth.

Important constraints, that influenced the design, are discussed in the next section. The
following sections show the design of the individual modules of the RV system.

4.2 FPGA: design constraints and design decisions

The design of the full RV system including CS parsers and TeSSLa specification on FPGA
is guided by recommendations for FPGA systems (subsection 2.4.1). Additionally, con-
straints of the board (FPGA architecture and speed grade; subsection 2.4.2) influenced
the amount of processing that can be achieved in a single processing step.

As a rule of thumb, a CS trace leads in average to 1 bit / instruction [3]. Thus, an initial
input bandwidth estimate was made of 250 MB/s for 2 cores at 1 GHz. Bandwidth
requirements increase with additional options (e.g. branch broadcast mode) and decrease
with filtering of trace parts that are not of interest.

Thus, an effort was made to keep AXI/TPIU clock frequency at 200 MHz to allow an
input bandwidth of 400 MB/s for raw trace data (Table 4.1). The next effort was made
to keep CS parser clock frequency at 125 MHz to sustain this required bandwidth. Each
parser can write a (timestamp, data) tuple in one clock cycle to the FIFO that connects to

17

4. Design

Figure 4.1: FPGA modules: design overview

18

4.3. Online and distributed runtime verification

TeSSLa. The parsers can be adjusted to different filters that reduce the number of events
sent to the input of the TeSSLa computation network, if needed.

Table 4.1: FPGA modules: clock frequencies and associated bandwidths

Module Frequency Info Bandwidth

TPIU 200 MHz 4 B / 2 cycles 400 MB/s

CS parser in 125 MHz 4 B / cycle 500 MB/s
each parser out up to 125 M events/s

TeSSLa in 50 MHz one input for each parser 25 M events/s per input
TeSSLa out one 64 bit output 25-50 M events/s, 400 MB/s

output cache FIFO 200 MHz 32 bit width (AXI), 512 KiB 800 MB/s

to SD card – online mode (section 4.3) ≤ SD card write speed

With the current TeSSLa compiler prototype, the generated Verilog modules cannot be
implemented for the Zynq board with clock frequencies above 50 MHz. Because TeSSLa
reads timestamp and data value of the (timestamp, data) tuple in 2 separate clock cycles,
a maximum input of 25 M events/s can be achieved per input adapter.

Thus, it has been crucial – not only for later multi-core systems but already for the present
Zynq board – to enable TeSSLa to read from multiple input streams in parallel. This addi-
tionally removes the critical bottleneck needed for the prototype TeSSLa system: merging
all streams in correct timestamp order into one multiplexed input stream.

The limited output bandwidth of the TeSSLa specification may only be a limitation for
initial testing specifications that mainly provide raw packet data (addresses, contextIDs,
instrumentation signals) as output. Typical TeSSLa specifications for RV reduce large
inputs to small outputs. As an extreme, a specification may limit its output to the boolean
result whether the property is satisfied or violated by the running program.

TeSSLa’s OutputAdapter can output multiple data values for one time stamp. Thus, more
than 25 M events/s can be written (upper bound 50 M events/s) with a clock cycle of
50 MHz. The output FIFO cache in the AXI/TPIU controller is fast enough to cache all
output up to its size (currently 512 KiB).

4.3 Online and distributed runtime verification

The RV system offers an option ”online mode” (option -z in trace launch) to write these
outputs to a file while the program-under-test is running. Thus, larger outputs than
the cache size can be collected with output bandwidth limitation of the SD card.1 This
limitation is not a problem for many typical specifications that reduce the raw CS trace
by several orders of magnitude. Additionally, one thread is running on core 0 to handle
this writing.

1 A future option of this mechanism could directly use e.g. a TCP socket instead of a file allowing higher
bandwidth.

19

4. Design

Main advantage of this option: the output of the TeSSLa specification can be read while
the program-under-test is running. This allows online RV verification of a running pro-
gram.

This output stream can be forwarded to another computer, e.g. a dedicated specification
server that runs an additional specification on such reduced data streams of multiple
devices. Such a distributed RV system allows rack-scale runtime verification.

4.4 AXI/TPIU controller and driver

An AXI interface [33] is used to connect and control the embedded FPGA modules on the
current Zynq platform. The FPGA module runs the needed state machines to work with
this protocol. Additionally, it controls the TPIU interface that provides the raw CS trace.
This module has been part of the existing Tracing Master infrastructure, written by David
Cock, that could collect raw CS traces from TPIU.

In the current solution, the raw CS trace is piped through CS parsers and TeSSLa speci-
fication instead of direct output. Some additional control and management mechanisms
were added.

4.5 CoreSight parsers

The TPIU interface of the Zynq 7000 system provides the CS trace as a multiplexed byte
stream in form of 16 bytes long frames. These frames contain multiplex information and
the actual trace payload of all activated CS streams, i.e. program trace for both cores, and
optionally ITM and FTM data.

Demultiplexed trace streams are parsed by specific parsers in parallel (implementation in
section 5.1). Timestamps are created by a counter in the Frame Synchronizer. Thus, events
of all parsers remain synchronised independent of different parsing pipeline lengths in
the different parsers. Additionally, with the known clock frequency (currently 125 MHz),
absolute time can be derived from timestamps.

Granularity of timestamp packets in the CS trace is too coarse to be used as timestamps
for TeSSLa. However, timestamp packets are parsed, and the parsers could be adjusted to
forward the received values in separate event streams to TeSSLa, if required.

4.6 Timestamp driver and interface to TeSSLa

The TeSSLa stream processing network needs progressing timestamps on all input streams
even if no data is available. After extending the TeSSLa input interface to accept more than
one InputAdapter und thus allow parallel input of multiple trace streams without need
to merge them first, a timestamp driver had to be created (subsection 5.2 for important
implementation details).

Although this driver needs to have a look at all incoming data streams, it does not merge
them. Thus, it will scale to larger number of input streams, in particular of more cores to
be observed on e.g. ThunderX SoC.

20

4.7. TeSSLa specification

4.7 TeSSLa specification

FPGAs are in particularly well suited for stream data processing in parallel such as the
computation network that is defined by a TeSSLa specification (background in 2.3). The
simple test/demo specification (Listing F.2), that is also used in the first part of the evalu-
ation, creates this computation network (Figure 4.2).

inputStreamCounts inputAdapter

q_itm_value06
Queue

in

out(18)

q_etm1_addr
Queue

in

out(4)

q_itm_value07
Queue

in

out(19)

q_itm_value00
Queue

in

out(12)

q_itm_value01
Queue

in

out(13)

q_itm_value02
Queue

in

out(14)

q_etm1_value1_contextid
Queue

in

out(5)

q_itm_value21
Queue

in

out(33)

q_etm1_value3_error
Queue

in

out(7)

q_itm_value30
Queue

in

out(42)

q_itm_value22
Queue

in

out(34)

q_etm0_addr
Queue

in

out(0)

q_itm_value31
Queue

in

out(43)

q_itm_value23
Queue

in

out(35)

q_itm_value24
Queue

in

out(36)

q_itm_value25
Queue

in

out(37)

q_itm_value08
Queue

in

out(20)

q_itm_value32_error
Queue

in

out(44)

q_itm_value09
Queue

in

out(21)

q_ftm_value0
Queue

in

out(8)

q_ftm_value3_error
Queue

in

out(11)

q_etm0_value1_contextid
Queue

in

out(1)

q_itm_value10
Queue

in

out(22)

q_etm0_value3_error
Queue

in

out(3)

q_itm_value11
Queue

in

out(23)

q_itm_value20
Queue

in

out(32)

q_itm_value03
Queue

in

out(15)

q_itm_value12
Queue

in

out(24)

q_itm_value04
Queue

in

out(16)

q_itm_value05
Queue

in

out(17)

s_itm_value14
Sink

in

out(26)

s_etm0_value2
Sink

in

out(2)

s_itm_value15
Sink

in

out(27)

s_itm_value16
Sink

in

out(28)

s_itm_value17
Sink

in

out(29)

s_etm1_value2
Sink

in

out(6)

s_itm_value18
Sink

in

out(30)

s_ftm_value1
Sink

in

out(9)

s_itm_value26
Sink

in

out(38)

s_itm_value27
Sink

in

out(39)

s_itm_value19
Sink

in

out(31)

s_itm_value13
Sink

in

out(25)

s_itm_value28
Sink

in

out(40)

s_ftm_value2
Sink

in

out(10)

s_itm_value29
Sink

in

out(41)

outputAdapter0

outputAdapter

m69
Const(0)

m65
Merge

b
out

m5
Last

m3
SLift(-)

b

out

m12
Last

m11
UnaryLiftTotal(+(_, 1))

in
out

m10
Merge

a

out

m14
Const(0)

b

out

q10
Queue

in
out

m58
Last

m57
UnaryLiftTotal(+(_, 1))

in

out

m56
Merge

a

out

m60
Const(0)

b
out

q56
Queue

in

out

m42
Last

m41
UnaryLiftTotal(+(_, 1))

in
out

m25
Last

m24
UnaryLiftTotal(+(_, 1))

in

out

m23
Merge

a

out

m38
Time

q38
Queue

in

out

m39
Last

m37
SLift(-)

b

out

q37
Queue

in

out

m21
Time

q21
Queue

in

out

m22
Last

m20
SLift(-)

b

out

q20
Queue

in
out

m78
UnaryLiftTotal(>>(_, 24))

m77
UnaryLiftTotal(&(_, 255))

in
out

m30
Last

m29
UnaryLiftTotal(+(_, 1))

in
out

m28
Merge

a

out

m84
Const(0)

m80
Merge

b

out

m62
UnaryLiftTotal(>>(_, 8))

m61
UnaryLiftTotal(&(_, 16777215))

in

out

q61
Queue

in

out

m89
Const(0)

m85
Merge

b

out

m74
Const(0)

m70
Merge

b

out

m6
UnaryLiftTotal(&(_, 255))

q6
Queue

in

out

m87
Last

m86
UnaryLiftTotal(+(_, 1))

in

out

a

out

q85
Queue

in
out

m32
Const(0)

b

out

q28
Queue

in
out

m72
Last

m71
UnaryLiftTotal(+(_, 1))

in
out

a

out

q70
Queue

in
out

m34
UnaryLiftTotal(>>(_, 8))

m33
UnaryLiftTotal(&(_, 16777215))

in

out

q33
Queue

in

out

m67
Last

m66
UnaryLiftTotal(+(_, 1))

in

out

a

out

q65
Queue

in
out

m54
Time

q54
Queue

in
out

m55
Last

m53
SLift(-)

b
out

q53
Queue

in
out

q77
Queue

in

out

m40
Merge

a

out

m45
UnaryLiftTotal(>>(_, 24))

m75
UnaryLiftTotal(&(_, 255))

in

out

m17
Last

m16
UnaryLiftTotal(+(_, 1))

in

out

m44
Const(0)

b
out

m27
Const(0)

b
out

m82
Last

m81
UnaryLiftTotal(+(_, 1))

in
out

a

out

m91
UnaryLiftTotal(&(_, 16777215))

q91
Queue

in

out

m4
Time

q4
Queue

in
out

q3
Queue

in
out

q80
Queue

in
out

m51
UnaryLiftTotal(>>(_, 24))

m50
UnaryLiftTotal(&(_, 255))

in
out

q50
Queue

in
out

m15
Merge

a

out

q40
Queue

in

out

q23
Queue

in

out

m8
UnaryLiftTotal(&(_, 16777215))

q8
Queue

in

out

q75
Queue

in

out

m19
Const(0)

b
out

m47
UnaryLiftTotal(&(_, 16777215))

q47
Queue

in

out

q15
Queue

in
out

m90
UnaryLiftTotal(&(_, 255))

q90
Queue

in

out

in(11)

out(0)

in(13)

out(0)

value

out(0)

a

out(1)

in(34)

out(0)

value

out(0)

a

out(1)

in(35)

out(0)

in(38)

out(0)

in(47)

out(0)

value

out(1)

in(10)

out(0)

in(36)

out(0)

value

out(0)

a

out(1)

in(7)

out(0)

value

out(1)

in(6)

out(0)

value

out(1)

in(45)

out(0)

value

out(1)

in(12)

out(0)

value

out(0)

a

out(1)

in(4)

out(0)

in(1)

out(0)

value

out(1)

in(3)

out(0)

in(43)

out(0)

value

out(1)

in(37)

out(0)

in(8)

out(0)

in(46)

out(0)

value

out(1)

in(42)

out(0)

value

out(1)

in(9)

out(0)

in(44)

out(0)

value

out(1)

in(2)

out(0)

value

out(1)

in(39)

out(0)

in(27)

out(0)

in(5)

out(0)

trigger

out(1)

in
out(2)

trigger

out(3)

in(28)

out(0)

in(21)

out(0)

trigger
out(1)

in(22)

out(0)

trigger
out(1)

in(23)

out(0)

in

out(1)

trigger
out(2)

in

out(3)

trigger

out(0)

in

out(1)

in

out(2)

trigger

out(3)

in

out(4)

in(15)

out(0)

in(49)

out(0)

in(40)

out(0)

in(16)

out(0)

in(0)

out(0)

trigger

out(1)

in
out(2)

trigger

out(3)

in(41)

out(0)

in(17)

out(0)

in(18)

out(0)

in(19)

out(0)

in(29)

out(0)

in(51)

out(0)

in(30)

out(0)

in(20)

out(0)

in(50)

out(0)

in

out(0)

trigger

out(1)

in

out(2)

trigger

out(3)

in
out(4)

in(31)

out(0)

in(48)

out(0)

in(32)

out(0)

in(14)

out(0)

in(24)

out(0)

trigger
out(1)

in

out(2)

in

out(3)

in(33)

out(0)

trigger

out(1)

in(25)

out(0)

in(26)

out(0)

in

out(1)

trigger

out(2)

in

out(3)

Figure 4.2: A simple TeSSLa computation network (Listing F.2)

For a detailed introduction to this language, I refer to https://www.tessla.io that offers
documentation and also an interactive playground to test specifications on traces and in
instrumented C programs for runtime verification. The syntax resembles the syntax of
Scala.

The currently used prototype compiler2 transforms a TeSSLa specification via Chisel to a
Verilog module. It was modified and extended to work well for this project.

A TeSSLa specification is compiled to the TeSSLa core language [10] first. These small
computation steps are connected in a computation network to accomplish the full func-
tionality of a specification. A simple macro count() from the stdlib is used here for illus-
tration. It counts the number of events (Listing 4.1). The generated directed computation
graph (Figure 4.3) consists of computation and queue nodes.3

Listing 4.1: TeSSLa: count macro from stdlib
in event: Events[Int]

def count[A](a: Events[A]) = c where {

def c: Events[Int] = merge(last(c, a) + 1, 0)

}

def event_count = count(event)

out event_count

The prototype compiler can already compile a large amount of the TeSSLa language.
However, several functions (like delay()) are not implemented yet. Additionally, sets
and maps – that are fully supported in the software version of TeSSLa – are not available
in the compiler. Please note, sets and maps must be instantiated with predefined capacity
in an FPGA implementation.

2 provided by Malte Schmitz and Daniel Thoma, Institut für Softwaretechnik und Programmiersprachen,
Universität zu Lübeck

3 Additionally, there is an InputAdapter. The OutputAdapter is instantiated as OutputAdapter0, the
OutputfilterAdapter as OutputAdapter (implementation details in subsection 5.3.4 for details).

21

https://www.tessla.io

4. Design

inputStreamCounts inputAdapter

q_event
Queue

in
out(0)

outputAdapter0

outputAdapter

in
out

m5
Const(0)

m1
Merge

b
out

m3
Last

m2
UnaryLiftTotal(+(_, 1))

in

out

a

out

q1
Queue

in

out

in(0)
out(0)

value

out(1)

trigger
out(0)

Figure 4.3: Count macro: computation network (Listing 4.1)

To write advanced specifications for testing, Daniel Thoma provided a fixed-capacity set
implementation written as a TeSSLa macro (Listing B.3). It unrolls during compilation.

This was then extended to a fixed-capacity map implementation (Listing B.4) that is useful
for other specifications (example with unrolled map of capacity 8: Figure 4.4).

Work for a new TeSSLa to FPGA compiler has already started in Lübeck. It will also
improve on issues that were observed during the evaluation of this system. Additionally,
a standard library will provide important macros for many use cases.

22

4.7. TeSSLa specification

inputStreamCounts inputAdapter

q_itm_value03
Queue

in

out(15)

q_itm_value00
Queue

in

out(12)

q_itm_value04
Queue

in

out(16)

q_itm_value01
Queue

in

out(13)

q_itm_value05
Queue

in

out(17)

q_itm_value02
Queue

in

out(14)

s_itm_value06
Sink

in

out(18)

s_etm1_addr
Sink

in

out(4)

s_etm0_value1
Sink

in

out(1)

s_itm_value07
Sink

in

out(19)

s_etm0_value2
Sink

in

out(2)

s_etm1_value1
Sink

in

out(5)

s_etm1_value2
Sink

in

out(6)

s_itm_value26
Sink

in

out(38)

s_itm_value27
Sink

in

out(39)

s_itm_value19
Sink

in

out(31)

s_itm_value28
Sink

in

out(40)

s_ftm_value2
Sink

in

out(10)

s_itm_value29
Sink

in

out(41)

s_itm_value21
Sink

in

out(33)

s_etm1_value3_error
Sink

in

out(7)

s_itm_value30
Sink

in

out(42)

s_itm_value22
Sink

in
out(34)

s_etm0_addr
Sink

in

out(0)

s_itm_value31
Sink

in

out(43)

s_itm_value14
Sink

in

out(26)

s_itm_value23
Sink

in

out(35)

s_itm_value15
Sink

in

out(27)

s_itm_value24
Sink

in

out(36)

s_itm_value16
Sink

in

out(28)

s_itm_value25
Sink

in

out(37)

s_itm_value08
Sink

in

out(20)

s_itm_value32_error
Sink

in

out(44)

s_itm_value17
Sink

in

out(29)

s_itm_value09
Sink

in

out(21)

s_ftm_value0
Sink

in

out(8)

s_ftm_value3_error
Sink

in

out(11)

s_itm_value18
Sink

in

out(30)

s_itm_value10
Sink

in

out(22)

s_ftm_value1
Sink

in

out(9)

s_etm0_value3_error
Sink

in

out(3)

s_itm_value11
Sink

in

out(23)

s_itm_value20
Sink

in

out(32)

s_itm_value12
Sink

in

out(24)

s_itm_value13
Sink

in

out(25)

outputAdapter0

outputAdapter

m5
Last

m4
UnaryLiftTotal(+(_, 1))

in

out

m3
Merge

a
out

m7
Const(0)

b

out

q3
Queue

in

out

m38
Time

m47
SLift(==)

a

out

m31
Last

m30
UnaryLiftTotal(+(_, 1))

in
out

m29
Merge

a
out

m33
Const(0)

b

out

q29
Queue

in

out

m28
Merge

q28
Queue

in
out

m48
Time

b

out

q47
Queue

in
out

m50
Last

q50
Queue

in

out

m49
UnaryLiftTotal(==(_, -1))

m46
SLift(&&)

b

out

q46
Queue

in

out

m56
UnaryLiftTotal(!=(_, -1))

m55
SLift(&&)

a

out

m58
SLift(==)

b

out

q55
Queue

in
out

m72
SLift(||)

m71
UnaryLiftTotal(unary !)

in
out

m70
SLift(&&)

b
out

q70
Queue

in
out

m74
Last

q74
Queue

in
out

m73
UnaryLiftTotal(==(_, -1))

m69
SLift(&&)

b

out

q69
Queue

in
out

m80
UnaryLiftTotal(!=(_, -1))

m79
SLift(&&)

a
out

m82
SLift(==)

b

out

q79
Queue

in
out

m96
SLift(||)

m95
UnaryLiftTotal(unary !)

in
out

m94
SLift(&&)

b
out

q94
Queue

in

out

m98
Last

q98
Queue

in
out

m97
UnaryLiftTotal(==(_, -1))

m93
SLift(&&)

b

out

q93
Queue

in

out

m104
UnaryLiftTotal(!=(_, -1))

m103
SLift(&&)

a

out

m106
SLift(==)

b

out

q103
Queue

in
out

m120
SLift(||)

m119
UnaryLiftTotal(unary !)

in
out

m118
SLift(&&)

b
out

q118
Queue

in

out

m122
Last

q122
Queue

in
out

m121
UnaryLiftTotal(==(_, -1))

m117
SLift(&&)

b

out

q117
Queue

in
out

m128
UnaryLiftTotal(!=(_, -1))

m127
SLift(&&)

a

out

m130
SLift(==)

b

out

q127
Queue

in
out

m144
SLift(||)

m143
UnaryLiftTotal(unary !)

in
out

m142
SLift(&&)

b
out

q142
Queue

in
out

m146
Last

q146
Queue

in

out

m145
UnaryLiftTotal(==(_, -1))

m141
SLift(&&)

b

out

q141
Queue

in
out

m150
UnaryLiftTotal(unary !)

m149
SLift(&&)

a

out

m152
UnaryLiftTotal(!=(_, -1))

m151
SLift(&&)

a

out

m154
SLift(==)

b

out

q151
Queue

in
out

q149
Queue

in
out

m148
SLift(if then else(_, -1))

m140
SLift3(if then else)

c

out

m139
Merge

a
out

m156
Const(-1)

b

out

q139
Queue

in
out

m138
UnaryLiftTotal(!=(_, -1))

m137
UnaryLiftTotal(if then else(_, 1, 0))

in

out

m102
UnaryLiftTotal(unary !)

m101
SLift(&&)

a

out

q101
Queue

in
out

m235
UnaryLiftTotal(0)

m234
Filter

events

out

m168
SLift(||)

m167
UnaryLiftTotal(unary !)

in
out

m166
SLift(&&)

b
out

q166
Queue

in

out

m170
Last

q170
Queue

in

out

m169
UnaryLiftTotal(==(_, -1))

m165
SLift(&&)

b

out

q165
Queue

in
out

m176
UnaryLiftTotal(!=(_, -1))

m175
SLift(&&)

a

out

m178
SLift(==)

b

out

q175
Queue

in
out

m192
SLift(||)

m191
UnaryLiftTotal(unary !)

in
out

m190
SLift(&&)

b
out

q190
Queue

in
out

m194
Last

q194
Queue

in
out

m193
UnaryLiftTotal(==(_, -1))

m189
SLift(&&)

b

out

q189
Queue

in
out

m200
UnaryLiftTotal(!=(_, -1))

m199
SLift(&&)

a

out

m202
SLift(==)

b

out

q199
Queue

in
out

m216
SLift(||)

m215
UnaryLiftTotal(unary !)

in

out

m214
SLift(&&)

b
out

q214
Queue

in

out

m218
Last

q218
Queue

in
out

m217
UnaryLiftTotal(==(_, -1))

m213
SLift(&&)

b

out

q213
Queue

in
out

m224
UnaryLiftTotal(!=(_, -1))

m223
SLift(&&)

a

out

m226
SLift(==)

b

out

q223
Queue

in
out

m238
SLift(||)

m237
UnaryLiftTotal(unary !)

in
out

m236
SLift(&&)

b

out

cond

out

q234
Queue

in

out

m222
UnaryLiftTotal(unary !)

m221
SLift(&&)

a

out

q221
Queue

in
out

m220
SLift(if then else(_, -1))

m212
SLift3(if then else)

c

out

m211
Merge

a

out

m228
Const(-1)

b
out

q211
Queue

in
out

m210
UnaryLiftTotal(!=(_, -1))

m209
UnaryLiftTotal(if then else(_, 1, 0))

in
out

m208
UnaryLiftTotal(+(0))

in
out

m184
SLift(+)

a

out

m198
UnaryLiftTotal(unary !)

m197
SLift(&&)

a

out

q197
Queue

in
out

m196
SLift(if then else(_, -1))

m188
SLift3(if then else)

c

out

m187
Merge

a
out

m204
Const(-1)

b

out

q187
Queue

in
out

m186
UnaryLiftTotal(!=(_, -1))

m185
UnaryLiftTotal(if then else(_, 1, 0))

in

out

b

out

m160
SLift(+)

a

out

m174
UnaryLiftTotal(unary !)

m173
SLift(&&)

a

out

q173
Queue

in
out

m172
SLift(if then else(_, -1))

m164
SLift3(if then else)

c

out

m163
Merge

a

out

m180
Const(-1)

b

out

q163
Queue

in
out

m162
UnaryLiftTotal(!=(_, -1))

m161
UnaryLiftTotal(if then else(_, 1, 0))

in

out

b

out

m136
SLift(+)

a

out

b

out

m112
SLift(+)

a

out

m126
UnaryLiftTotal(unary !)

m125
SLift(&&)

a

out

q125
Queue

in
out

m124
SLift(if then else(_, -1))

m116
SLift3(if then else)

c

out

m115
Merge

a

out

m132
Const(-1)

b

out

q115
Queue

in
out

m114
UnaryLiftTotal(!=(_, -1))

m113
UnaryLiftTotal(if then else(_, 1, 0))

in

out

b

out

m88
SLift(+)

a

out

m100
SLift(if then else(_, -1))

m92
SLift3(if then else)

c

out

m91
Merge

a

out

m108
Const(-1)

b
out

q91
Queue

in
out

m90
UnaryLiftTotal(!=(_, -1))

m89
UnaryLiftTotal(if then else(_, 1, 0))

in

out

b

out

m64
SLift(+)

a

out

m276
SLift(==)

m275
SLift3(if then else)

a

out

m288
SLift(==)

m287
SLift3(if then else)

a

out

m289
Last

q289
Queue

in
out

m277
Last

q277
Queue

in

out

m264
SLift(==)

m263
SLift3(if then else)

a

out

m265
Last

q265
Queue

in

out

m252
SLift(==)

m251
SLift3(if then else)

a

out

m253
Last

q253
Queue

in

out

m240
SLift(==)

m239
SLift(if then else(_, _, -2))

a

out

m241
Last

q241
Queue

in
out

q239
Queue

in

out

m260
UnaryLiftTotal(>(_, 0))

m259
SLift(if then else(_, _, -2))

a

out

c

out

q251
Queue

in
out

m272
UnaryLiftTotal(>(_, 0))

m271
SLift(if then else(_, _, -2))

a
out

c

out

q263
Queue

in

out

m284
UnaryLiftTotal(>(_, 0))

m283
SLift(if then else(_, _, -2))

a
out

c

out

q275
Queue

in
out

m296
UnaryLiftTotal(>(_, 0))

m295
SLift(if then else(_, _, -2))

a

out

c

out

q287
Queue

in

out

m308
UnaryLiftTotal(>(_, 0))

m307
SLift(if then else(_, _, -2))

a

out

m12
Time

m11
SLift(-)

a
out

m13
Last

b

out

m10
SLift(+)

a

out

m15
Last

b
out

q10
Queue

in
out

m54
UnaryLiftTotal(unary !)

m53
SLift(&&)

a

out

q53
Queue

in
out

m52
SLift(if then else(_, -1))

m45
SLift3(if then else)

c

out

m44
Merge

a

out

m60
Const(-1)

b
out

q44
Queue

in
out

m43
UnaryLiftTotal(!=(_, -1))

m42
UnaryLiftTotal(if then else(_, 1, 0))

in

out

m41
SLift(+)

b

out

m24
Time

m23
SLift(-)

a

out

m301
Last

q301
Queue

in

out

m300
SLift(==)

m299
SLift3(if then else)

a

out

c

out

q299
Queue

in

out

m320
UnaryLiftTotal(>(_, 0))

m319
SLift(if then else(_, _, -2))

a

out

m37
Time

m36
Last

value
out

m25
Last

b

out

m14
Time

value
out

m20
Time

m19
SLift(-)

a
out

m325
Last

q325
Queue

in

out

m78
UnaryLiftTotal(unary !)

m77
SLift(&&)

a

out

q77
Queue

in
out

m313
Last

q313
Queue

in

out

m316
SLift(if then else(_, -1))

m315
SLift3(if then else)

c
out

m84
Const(-1)

m67
Merge

b
out

m280
SLift(if then else(_, -1))

m279
SLift3(if then else)

c
out

m27
Time

q27
Queue

in

out

m244
SLift(if then else(_, -1))

m243
SLift3(if then else)

c

out

m242
Merge

a

out

m1
Last

m17
SLift(-)

b

out

m312
SLift(==)

m311
SLift3(if then else)

a

out

m292
SLift(if then else(_, -1))

m291
SLift3(if then else)

c
out

m270
Const(-1)

m266
Merge

b

out

m304
SLift(if then else(_, -1))

m303
SLift3(if then else)

c
out

m302
Merge

a

out

m306
Const(-1)

b

out

value
out

m21
Last

b

out

m76
SLift(if then else(_, -1))

m68
SLift3(if then else)

c

out

a

out

q67
Queue

in
out

m66
UnaryLiftTotal(!=(_, -1))

m65
UnaryLiftTotal(if then else(_, 1, 0))

in

out

b

out

m324
SLift(==)

m323
SLift3(if then else)

a

out

m9
Time

m8
Last

value
out

m328
SLift(if then else(_, -1))

m327
SLift3(if then else)

c
out

m256
SLift(if then else(_, -1))

m255
SLift3(if then else)

c
out

m338
Time

m337
SLift(-)

a

out

c

out

q311
Queue

in

out

m332
UnaryLiftTotal(>(_, 0))

m331
SLift(if then else(_, _, -2))

a

out

c

out

q323
Queue

in

out

m339
Filter

events

out

m40
Time

m39
SLift(==)

a

out

m335
Time

b

out

cond
out

q339
Queue

in

out

a

out

q41
Queue

in

out

m2
Time

value

out

m268
SLift(if then else(_, -1))

m267
SLift3(if then else)

c
out

a

out

value
out

m35
Time

m34
SLift(-)

a

out

b

out

m336
SLift(+)

a

out

m278
Merge

a

out

m18
Time

a

out

q17
Queue

in
out

m22
Time

value
out

m290
Merge

a

out

m318
Const(-1)

m314
Merge

b

out

m330
Const(-1)

m326
Merge

b

out

m282
Const(-1)

b
out

value
out

m254
Merge

a

out

a

out

m16
Time

value

out

b
out

q336
Queue

in

out

a

out

value
out

m26
Time

value

out

m258
Const(-1)

b

out

q23
Queue

in

out

m294
Const(-1)

b
out

value

out

m246
Const(-1)

b
out

q19
Queue

in

out

value
out

value
out

value
out

b

out(0)

b

out(1)

a

out(0)

a

out(1)

b

out(0)

b

out(1)

in

out(0)

in
out(1)

b

out(2)

b

out(3)

a

out(4)

a

out(0)

a

out(1)

b

out(0)

b

out(1)

b

out(2)

b

out(3)

b

out(4)

b

out(5)

b

out(6)

b

out(7)

in(8)

out(0)

b

out(0)

b

out(1)

b

out(0)

b

out(1)

in

out(0)

in
out(1)

b

out(2)

b

out(3)

a

out(4)

a

out(0)

a

out(1)

in

out(0)

in

out(1)

b

out(2)

b

out(3)

a

out(4)

in

out(0)

b

out(1)

a

out(0)

a

out(1)

in

out(2)

b

out(0)

b

out(1)

value

out(0)

in

out(1)

in(10)

out(0)

in

out(0)

in

out(1)

b

out(2)

b

out(3)

a

out(4)

a

out(0)

a

out(1)

a

out(2)

value

out(0)

in

out(1)

a

out(0)

a

out(1)

a

out(2)

a
out(0)

a

out(1)

in

out(2)

in(12)

out(0)

in

out(1)

a

out(0)

a

out(1)

in(15)

out(0)

b

out(1)

in

out(2)

a

out(0)

a
out(1)

a

out(2)

a

out(0)

a
out(1)

a

out(2)

value

out(0)

in

out(1)

a
out(0)

in

out(1)

a

out(2)

b

out(0)

b

out(1)

a

out(0)

a

out(1)

a

out(2)

value

out(0)

in

out(1)

in
out(0)

b

out(1)

in

out(0)

trigger

out(1)

a

out(2)

trigger

out(3)

a

out(4)

trigger

out(5)

a

out(6)

trigger

out(7)

a

out(8)

trigger

out(9)

a

out(10)

b

out(11)

in

out(12)

trigger

out(13)

a

out(14)

trigger

out(15)

a

out(16)

trigger

out(17)

a

out(18)

b

out(19)

b

out(20)

b

out(21)

b

out(22)

b

out(23)

b

out(24)

b

out(25)

trigger

out(26)

trigger

out(27)

b

out(28)

trigger

out(29)

b

out(30)

trigger

out(31)

b

out(32)

trigger

out(33)

b

out(34)

trigger

out(35)

b

out(36)

trigger

out(37)

trigger

out(38)

in

out(39)

b

out(40)

b

out(41)

b

out(42)

value

out(0)

in

out(1)

b

out(0)

b

out(1)

in

out(0)

b

out(1)

in(16)

out(0)

b

out(0)

b
out(1)

in(9)

out(0)

in

out(0)

in
out(1)

b

out(2)

a

out(3)

b

out(4)

a

out(0)

a

out(1)

in(6)

out(0)

value

out(1)

in

out(2)

a

out(3)

b

out(0)

b

out(1)

b

out(0)

b

out(1)

b

out(0)

b

out(1)

a

out(0)

a

out(1)

in

out(2)

a

out(0)

a

out(1)

in
out(0)

b

out(1)

a
out(0)

a

out(1)

in

out(2)

b

out(0)

b

out(1)

b

out(0)

b

out(1)

in

out(0)

in
out(1)

b

out(2)

b

out(3)

a

out(4)

a

out(0)

a

out(1)

a

out(0)

a

out(1)

a

out(2)

in

out(0)

in
out(1)

b

out(2)

b

out(3)

a

out(4)

a

out(0)

a

out(1)

in
out(0)

b

out(1)

value

out(0)

in

out(1)

a

out(0)

a

out(1)

in

out(2)

b
out(0)

b

out(1)

in

out(0)

in

out(1)

b

out(2)

b

out(3)

a

out(4)

a

out(0)

a

out(1)

a

out(2)

in(13)

out(0)

in
out(1)

value

out(0)

in

out(1)

a

out(0)

a

out(1)

in

out(2)

in(14)

out(0)

in
out(0)

b

out(1)

in(11)

out(0)

value

out(0)

in

out(1)

a
out(0)

a

out(1)

in

out(2)

b

out(0)

b

out(1)

in
out(0)

b

out(1)

a

out(0)

a

out(1)

a

out(2)

b

out(0)

b

out(1)

in(7)

out(0)

value

out(1)

b

out(2)

in(3)

out(0)

in
out(1)

trigger

out(2)

trigger

out(3)

in

out(4)

in(0)

out(0)

in
out(1)

in(4)

out(0)

trigger

out(1)

in

out(2)

trigger

out(3)

in

out(4)

in

out(5)

in

out(6)

trigger

out(7)

trigger

out(8)

in(1)

out(0)

trigger

out(1)

in

out(2)

trigger

out(3)

in
out(4)

in

out(5)

in(5)

out(0)

in(2)

out(0)

in

out(1)

trigger

out(2)

in

out(3)

Figure 4.4: TeSSLa computation network with unrolled map of capacity 8. Event stream
flows from top to bottom.

23

4. Design

4.8 Software tooling

The runtime verification system runs on a current Linux environment (Ubuntu 18.04 LTS)
with an older kernel (4.4-xilinx). After loading of the .bit file for the FPGA and the kernel
module to access it, test programs can be launched with various configuration options
with trace launch (Appendix D). This includes optional instrumentation of the binary
without need to recompile from source.

Additional tools include an output parser, a timestamp generator, and various test pro-
grams and test specifications.

4.9 Instrumentation library

The program trace parser decompresses branch addresses from the CS trace and forwards
them to the specification. With this information, specifications can be written to e.g. track
order and timing of function calls during runtime.

However, more detailed information is needed to e.g. track memory allocation/deallo-
cation and/or mutex/lock/barrier use in multi-threaded programs. For this, an instru-
mentation library has been created that wraps these typical functions of glibc and sends
instrumentation data – e.g. address of an allocated/freed memory region – via ITM stim-
ulus.

24

Chapter 5

Implementation

The implementation of this project is based on the existing Tracing Master infrastructure
written by David Cock that allowed collection of raw CS traces via ETB and TPIU to
be processed offline. All FPGA modules (VHDL of the parsers and Verilog of compiled
specification) are embedded into this AXI/TPIU controller. Asynchronous FIFOs are used
to connect the different clock domains. Various modifications and extensions were made
to the kernel module and the tooling software, as well.

The prototype TeSSLa compiler consists of different parts (TeSSLa to core TeSSLa, core
Tessla to Chisel, TeSSLa synthesis) that were provided by Malte Schmitz and Daniel
Thoma, University of Lübeck. Several modifications and extensions were made, which
were made available for optional integration into the upstream code base.

5.1 CoreSight parsers

Parsers were written in VHDL to demultiplex and decompress the CS byte stream from
TPIU interface to events as needed by the TeSSLa specification for processing. The overall
data flow is shown in Figure 4.1.

5.1.1 CS frame synchronizer and parser

The Trace Port Interface Unit (TPIU) provides the CS byte stream in 4 byte words [35].
Frames of 16 bytes contain multiplex information and payload data (Trace formatter, [5]).
Periodic synchronization signals 0xFFFFFFFF are sent to resynchronize frame parsers, if
needed.

The Frame Synchronizer reads and caches the received words from TPIU and forwards
only complete frames to the frame parser. It resynchronizes, if needed. Additionally, it
increments a 48 bit wide counter with each clock cycle. This timestamp information is
forwarded with each frame through the entire pipeline. Thus, it does not matter that
some downstream parsers need more processing steps than others.

The Frame Parser decodes the specified bit pattern of the frame [5] to demultiplex the
payload using the defined IDs (Table 5.1). From each frame, 0 to max 15 B of data are
sent to each of the specific parsers via synchronous FIFO.

25

5. Implementation

Table 5.1: Multiplexed CS streams in frames: IDs used in CS configuration

ID Value

Core 0 0x10
Core 1 0x11
ITM 0x6F
FTM 0x70 to 0x7F

5.1.2 PTM parser

The parser maintains a buffer that is appended when new data is received (0 to 15 B
every 4 clock cycles) and reduced/shifted when complete packets are parsed. It is built
as a processing pipeline (Figure 5.1).

Figure 5.1: Data flow in PTM parser

Each of these processing modules of the pipeline consists of several small processing steps
in a pipeline to keep clock frequency high (subsection 2.4.1 for relevant FPGA character-
istics; consecutive design constraints in section 4.2).

Tokenizer. The tokenizer can handle all PTMv1.1 packet types as specified [3]: A-sync,
I-sync, Atom, Branch address, Waypoint update, Trigger, Context ID, VMID, Timestamp,
Exception return, Ignore.

Some packets have a defined fixed payload size; for other packets, this payload size is
determined dynamically based on the packet data. Parsed packets are forwarded to the
address parser. Each packet carries the timestamp of the frame it was extracted from.

Address Parser. Addresses are compressed in the CS program trace in Branch address

and Waypoint update packets. I-sync packets always provide a full 32 bit address. The
address parser needs to maintain an internal state to decompress addresses correctly: last
known address and current ISA mode (arm, thumb, jazelle). With this information, full
32 bit addresses are added to address carrying packets. Other packets are forwarded.

Filter. Not all packets are of interest for the TeSSLa specification. Currently, addresses of
Branch address and Waypoint update packets and contextID from I-sync and Context

ID packets are used. The filter can be adjusted to other requirements.

Embedding/Formatter. This part of the pipeline encodes the address and contextID infor-
mation into event tuples as defined below (Table 5.2). Multiplex address 0x00 is used for
addresses, 0x01 for contextID.

Due to compression, several events can be encoded in a single frame. To assure strictly
monotonic time increments, the 48 bit timestamp is extended by a time extension of 4 bits,
that is used for additional small increments if multiple packets arrive that were derived
from the same frame.

26

5.2. Timestamp driver

An asynchronous FIFO with am input:output width ratio of 2:1 is used for data transfer
to TeSSLa. Thus, timestamp and data value can be written to the FIFO in one clock cycle.

5.1.3 ITM parser

The ITM parser works like the PTM parser. However, fewer and less complex packets
need to be parsed.

Tokenizer. The tokenizer can handle all ITM packet types as specified [2]: Synchroniza-
tion (identical with A-sync of PTM), Overflow, SWIT, Timestamp, Reserved. SWIT packets
contain the data of the stimuli that were issued by software, e.g. due to instrumentation.

Embedding/Formatter. The 32 ITM ports are mapped to multiplex addresses 0x00 to 0x1F
for TeSSLa.

5.1.4 FTM parser

The Fabric Trace Monitor (FTM) is an extension of the internal CS infrastructure by the
Xilinx Zynq-7000 SoC [35]. It allows the FPGA implementation to send 32 bit data words
into the CS stream. This is convenient for instrumentation and debug purpose of e.g.
hybrid CPU / FPGA applications.

Using a 4 bit ATID address, up to 16 different signal ports can be defined in the FPGA
application. However, only one (address, data) tuple can be sent per clock cycle. Thus, an
FPGA application has to synchronize signals itself if different modules want to send such
signals to different ATID addresses concurrently.

This ATID address is combined with the provided FTM ID number in CS configuration.1

With the deliberately chosen 0x70 as base address, FTM IDs 0x70 to 0x7F are available in
the CS frame.

Due to the nature of multiplexed data streams in CS frames, it is best to instantiate a
separate FTM parser for each of these FTM IDs. Thus, only one FTM address (ATID 0x0,
thus ID 0x70) is used.

The FTM parser works like the PTM parser. However, fewer and less complex packets
need to be parsed.

Tokenizer. The tokenizer can handle all FTM packet types as specified [35]: Synchroniza-
tion (identical with A-sync of PTM), Trace, Trigger, Cycle count, Overflow, First.

Embedding/Formatter. The FTM data is mapped to multiplex addresses 0x00 for TeSSLa.

5.2 Timestamp driver

The TeSSLa event stream processing network of the specification requires strictly mono-
tonic increments on all input channels to make progress. This was implicitly guaranteed
by the original InputAdapter of the TeSSLa compiler prototype.

1 The ARM CSAL library was extended for this to allow detection and configuration of Xilinx FTM.
Details are in subsection 5.5

27

5. Implementation

An extension was built during this project to avoid a bottleneck of merging all parsed
event streams before sending them to the TeSSLa network (MultiInputAdapter below).
However, computation stopped if not all inputs were used (e.g. only one core, or no
FTM/ITM data).

Thus, this timestamp driver was introduced between the outputs of the various CS parsers
and embedding the information into the asynchronous FIFOs to TeSSLa (Figure 4.1). De-
spite looking at all data streams, there is no merging of data. Thus, it will scale to more
inputs (e.g. program traces of more cores).

It is designed to send additional timestamps on idling streams (broom wagon principle),
which allows the TeSSLa network to make progress. Several variants have been explored
during this project.2 Subtle changes can have large effects.

The current correctly-working solution consists of a co-design of 3 modules: this times-
tamp driver, the new MultiInputAdapter and modified InputAdapter in TeSSLa (subsec-
tion 5.3.3).

At any clock cycle, a parser output may have a valid (timestamp, value) event tuple
(indicated by asserted wr en for the FIFO) or no event (not asserted wr en). If none or all
of the parsers have a valid event, nothing is changed. If some parsers have a valid event,
an artificial ”broom wagon” event is provided to the FIFOs of parser outputs without
event. Therefore, at any clock cycle, events are written to all FIFOs or none.

This ”broom wagon” event consist of a timestamp that is calculated from observed times-
tamps and is guaranteed to be lower than any timestamp a parser could send in the fu-
ture. The data value uses mux address 0xFF that is defined to be filtered in the modified
InputAdapter. Because the ”broom wagon” timestamp is guaranteed to be lower than any
future true timestamp of all parsers, there is the possibility that it could be lower than an
already sent timestamp for a particular parsed event. Thus, the MultiInputAdapter has
a filter to remove such timestamps that would violate the required monotonicity.

Please note: All parsers are designed to only provide strictly monotonically incrementing
timestamps. Thus, any timestamp violating this property, must have been a ”broom
wagon” timestamp, which is safe to be removed.

And finally, at the end of the trace, the timestamp driver sends an additional final times-
tamp push to the TeSSLa network via all FIFOs to allow it processing the last input from
the traces.

This solution has the advantage that event flow through the TeSSLa network comes as
close to the original InputAdapter as possible.3 The added functionality of multiple inputs

2 An initial design implemented in Chisel as a module instantiated in the MultiInputAdapter had a sub-
tle bug (occasionally dropping one address during bursts) that is related to requirements of the InputAdapter
to be directly connected with a special ”fwft” FIFO (subsection 5.3.1), which prevents easy chaining of mod-
ules.

3 Having lots of incrementing timestamps flowing into the computation network on all outgoing edges of
the TeSSLa InputAdapter has shown to be a critical property for proper working of the computation network.
During development, ”smarter” timestamp drivers that sent ”broom wagon” events only after some idle time
(in the false attempt to limit the number of additional events sent to the TeSSLa network), and already filtered
timestamps (to avoid the need for a filter in MultiInputAdapter) led to halts of the computation network. In
retrospective, the gained insights of these explorations make lots of sense.

28

5.3. TeSSLa specification

without need to merge first is a critical step for scaling of the TeSSLa network to program
traces of multi-core CPUs like ThunderX.

Despite looking simple (Appendix C), several subtle details had to be considered. Due
to the co-design of 3 modules, overall effect needs to be considered if modifications are
made in any of them.

5.3 TeSSLa specification

5.3.1 Some technical details of the inner working of TeSSLa on FPGA

For a given TeSSLa specification, a computation network is generated in which event
streams can be processed. Each event consists of a (timestamp, data value) tuple. For
technical reasons, timestamp and data are pushed separately over this computation net-
work, timestamp first and data value second. Thus, each movement of of such a tuple
takes at least 2 clock cycles. It may take longer if no progress can be made in a particular
network node (e.g. caused by merging in the output adapter).

Table 5.2: Encoding of multiplexed TeSSLa event tuples (input / output)

Type Flag Description [bits]

Timestamp 1 [61] padding [60:53] timestamp [52:0]
Data value 0 [61] mux address [60:53] data value [52:0]

For external connection of this computation network, each input and output adapter can
multiplex multiple event streams (Table 5.2). Each 62 bit wide word represents either a
timestamp or multiplexed data value. Currently, a mux address width of 8 bit was chosen
to allow up to 256 multiplexed streams.

Timestamp width 53 bits was chosen to accommodate a 48 bit counter (lasting approx. 26
days at 125 MHz), plus 4 bit time extension, plus 1 bit to embed this unsigned int in the
signed int used in TeSSLa internally. Data width was chosen to be equal because data
values must be able to hold a timestamp. Finally, a max. limit of 64 bit was used as
constraint to allow an easy 2:1 FIFO connection with the outside AXI interface (32 bit
data port).

These settings were chosen specifically for this project and may be adjusted for other
projects.

As a technical detail: Due to its design, the InputAdapter may de-assert a ready signal
upon presentation of the data value. This happens e.g. when a data value could be
sent to a specific edge but then the next timestamp, which needs to be sent to all edges,
cannot be forwarded. Thus, the InputAdapter makes specific use of the optional first-
word-fall-through (fwft) mode of the connected FIFO [34] with different semantics than
standard ready/valid signals used in chainable modules. Specifically, the ready signal
of the InputAdapter should be connected directly to the rd en control of the fwft FIFO,
which allows the required semantics.

29

5. Implementation

5.3.2 TeSSLa compiler

The compilation process of a TeSSLa specification to a Verilog module currently consists
of 2 steps.

1. tessla2chisel compiles the TeSSLa specification to a Chisel program, internally
creating a program in TeSSLa core language first.

2. tessla-synthesis provides pre-defined TeSSLa specific Chisel modules to run this
program and finally create a Verilog module.

This Specification.v Verilog module is then used when building the entire FPGA bit-
stream file using Xilinx Vivado 2018.1.

Key modifications made to the TeSSLa compile system:

1. Allow manual definition of the multiplex address width instead of auto-deduction
based on arity of muxed streams

2. Sorting of input and output labels first before assigning IDs to have consistent map-
pings of input and output streams

3. MultiInputAdapter with required TimestampDriver on CS parser side

4. patched InputAdapter

5. OutputFilterAdapter

5.3.3 MultiInputAdapter

The original prototype system allowed only one multiplexed input (Table 5.2). While data
values were forwarded to the specific edge of the computation network (implemented as
queue) defined by the mux address, timestamps are forwarded to all edges connected
with the InputAdapter. This implicitly guarantees that computation progress can be
made in the entire network.

However, this would require merging all parsed CS streams (2x PTM, FTM, ITM; on larger
systems many more) into one event stream, which creates a bottleneck.

Thus, a MultiInputAdapter was created, that internally instantiates a separate InputAdapter
module for each input and then uses offsets to map demultiplexed streams to queues with
associated IDs.

This simple design lead to a complete stop of the computation network if not all inputs
were providing inputs (e.g. inactive ITM or FTM). Thus, the Timestamp Driver was
added (subsection 5.2) that guarantees progress on the entire computation network. The
MultiInputAdapter was extended to filter out ”broom wagon” timestamps issued by the
Timestamp Driver if they referred to an earlier time than already received with a former
true event. Thus, monotonicity is guaranteed in the TeSSLa network. This co-design is
described in detail in subsection 5.2.

The InputAdapter was patched to drop data values with mux address 0xFF to avoid
invalid data values associated with the driver timestamps to flow into the computation
network.

30

5.4. AXI/TPIU controller and driver

5.3.4 OutputFilterAdapter

The original OutputAdapter of the received prototype is a masterpiece. It accomplishes
proper merging of all defined output streams into one output that is then sent back to the
AXI/TPIU controller.

To reduce bandwidth needed for the TeSSLa output, a small state machine was added as
an OutputFilterAdapter Chisel module to forward only timestamps if at least one data
value follows. This additional computation node is instantiated between the OutputAdapter
and the effective output of the specification module.

5.4 AXI/TPIU controller and driver

This entire processing pipeline (Figure 4.1) is embedded in the already existing AXI/TPIU
controller FPGA module and kernel module driver (by David Cock). Some extensions and
modifications were made to add new functionality and configuration options.

The processed output can be read from the character device /dev/axi tpiu instantiated
by the tpiu emio ctrl kernel module. The device offers a control and status interface in
/sys/class/misc/axi tpiu. A software library exists that can access these parts directly
from C.

5.5 Software tooling

The entire trace collection and runtime verification system runs on a current Ubuntu 18.04
LTS system. For stability reasons an older kernel (4.4-xilinx) is used.

trace launch The entire CS configuration, control of the AXI/TPI module with the FPGA
processing pipeline, preloading of the instrumentation library, and data collection is han-
dled by this trace launch. Thus, this existing program was extended a lot and offers
various options now (Appendix D).

Extended CS Access Library (CSAL) A modified and extended fork of ARM CSAL [6] is
used for CS configuration. It has been extended earlier for the modified configuration pro-
cedure that allows platform configuration with a Prolog script instead of direct C code.4

To use this script configuration in the instrumentation library too without embedding a
full parser, the script is compiled to a byte code at build time that is then executed during
CS initialization.

The library has been extended to provide detection and configuration of FTM in addition
to ETM/PTM and ITM. This extension is specific for the Zynq-7000 SoC from Xilinx.
However, it only uses information that is already provided by the CS ROM and by the
configuration script, which is platform specific in all cases. Thus, it can be modified easily
for other platforms that provide such functionality.

parse tessla output The output of processed CS trace is in the binary format as described
above (Table 5.2). This helper tool parses this binary output to text in various formats.

4 Tracing Master repo for details.

31

5. Implementation

5.6 Instrumentation library

Writing properties for runtime verification with TeSSLa is limited if only address jumps
(e.g. jumps to functions) and contextID switches are available. More interesting properties
need e.g. the address of allocated/deallocated memory blocks, specific mutex/lock/bar-
rier information (threadID, lockID), or tracking tags in distributed applications.

There are various options to instrument programs to provide such data (Table 2.1). The
instrumentation library is written to allow all of them with minor modifications. It em-
beds instrumentation data via ITM into the CS trace, which is then parsed by the ITM
parser.

The most convenient way of instrumenting a program is accomplished by adding the
-P option to trace launch. It then modifies the environment of the program under test
to use LD PRELOAD with the instrumentation wrapper.so library. All currently instru-
mented functions are listed in Appendix E

For memory allocation/deallocation: the address of the memory block is sent as instru-
mentation signal.

For mutex/lock/barrier instrumentation: threadID and mutexID are merged into one
32 bit word. In the current configuration, 256 threads can be observed (8 bits). The
pthread t typed thread id is mapped to an identifier in [0, 255] using a hash map5 in the
instrumentation library. New ids are created with each pthread create() and used for
the instrumented mutex/lock/barrier function calls. The lower 24 bit of the pointer to the
mutex/lock/barrier are merged into the full 32 bit instrumentation word. Alternatively,
a hashmap lookup can also be used for this mapping.

The TeSSLa specification can separate this info in the specification for specific use (Listing
A.2).

This solution was chosen to have atomic signals sent to the ITM, which guarantees a
unique event timestamp in TeSSLa specification. Alternatively, handling multiple separate
signals, each with different timestamp but semantically associated with one event, would
be tricky.

The instrumentation overhead is benchmarked and discussed in the evaluation chapter.
Because of this overhead, spin-locks are not instrumented in default instrumentation set-
ting. However, the instrumentation library offers a flag to include them, too.

As a technical note: writing an instrumentation wrapper for memory allocating functions
requires the wrapper to provide a temporary workaround memory allocator until initial-
ization is complete. Looking up the original symbols with dlsym() triggers a memory
allocation, which would run into an endless recursion until stack overflow without such
an added allocator.6

5 uthash [18] was chosen for this implementation for various reasons: 1) it has worked very reliably in
an earlier project [15], 2) permissible open-source license, 3) easy-to-integrate header-only library, 4) simple
adjustment of its internal memory management to not interfere with wrapped glibc malloc() and free()

functions in the instrumentation library.
6 Tracing Master repo for details.

32

Chapter 6

Evaluation and Benchmarking

Various aspects of the implemented RV system were evaluated in three groups of experi-
ments.

• correct parsing of the raw CoreSight (CS) stream (section 6.2)

• instrumentation correctness and overhead (section 6.3)

• RV using TeSSLa specifications for three properties in different domains (section 6.4)

6.1 Methods

All experiments were run on the same Zynq zc706 board with Zynq 7000 SoC, Linux
kernel 4.4-xilinx, and Ubuntu 18.04 LTS. The kernel was patched to write processID into
the CONTEXTIDR register (option during build process).

Experiments were run as root and with deactivated Address Space Layout Randomization
(ASLR). Each experiment configuration was run 3 times. Results are shown as raw counts,
mean ± SD for time, or average and peak for throughput.

Experiments were sequentially numbered from 1 to 20. For space reasons, the experiment
descriptions here are summarised. The experiment numbers refer to the detailed experi-
ment description that allow full reproducibility, raw data collection, and detailed analysis
description in the thesis report repository.

6.1.1 CoreSight configuration

Several details of CS configuration are of importance to understand some findings. As de-
fault for all tests (unless mentioned otherwise), CS was configured to filter for 1) address
space of the test program (text section), and 2) for processID of the test program, which is
encoded in the CONTEXTIDR register. This already reduces the raw CS trace to the parts
that are typically of interest when tracing a program in user space.

For testing multi-threaded programs (pthread library), the filtering for processID must be
deactivated (-p option in trace launch) because created threads have a different ID in
the CONTEXTIDR register on which this filter is based on. Otherwise, only the trace of
the main thread is collected.

33

6. Evaluation and Benchmarking

CS is configured with branch broadcast option activated to receive direct jump addresses
to functions, which is an absolute requirement to define TeSSLa specifications without
instrumentation. This leads to longer traces (no E atoms). Without this option active,
direct function calls would only be encoded as an E atom. Trace overhead (and thus raw
trace throughput) varies on actual program code. However, raw traces show that there
are already many I-sync packets (each 9 bytes) due to ISA changes between arm and
thumb code and returning from filtered program sections when glibc functions are called.
Thus, overhead was observed to be around 10% for tested programs.

With given clock frequency of the ARM cores, the theoretical bandwidth limit of 400
MB/s (TPIU clock at 200 MHz) was never reached. A max. throughput of 260 MB/s was
observed with the used configurations. No packets of the raw trace were dropped, as
long as the used TeSSLa specification reduced the input stream to fit all into the output
FIFO or not be throttled by the output to disk (online mode, section 4.3).

Overhead will be larger for programs without calls to glibc and no or only few ISA mode
changes between arm and thumb code. Thus, branch broadcast can be deactivated (-b
option in trace launch).

6.2 CS parser validation

These experiments were designed to establish correct address and contextID parsing by
the newly written PTM parser. OpenCSD [26] trc pkt lister was used as software
reference parser for raw CS trace streams.

Experiments 3 and 4: correct address and contextID

As a first task, output of the CS parser / TeSSLa system was compared with the raw CS
traces as collected via ETB and via AXI/TPIU using a patch to bypass the processing
pipeline and output raw traces.1

Methods. A simple recursive test program nested malloc (Listing F.1) was used. This
program is used for many of the experiments shown here. Several other programs have
also been tested during development and testing of the CS parser. Core affinity was set
to core 1. Raw CS traces were collected 1) from ETB and 2) from TPIU with bypass, and
then parsed with trc pkt lister from OpenCSD project.

A simple TeSSLa specification was used that forwards addresses and contextIDs (identity
functions), their counts, and time differences. The relevant snippet is shown in Listing F.2,
which is embedded after the reference interface (Appendix A) and out definitions for
all 52 outputs. It is the default test/demo TeSSLa specification in the Tracing Master
repository.

Different address filter option configurations were compared in experiments 3 and 4 to
establish initial outputs to be matching the parsed raw trace without filters to the final
state with activated filters in the PTM parser and TeSSLa specification as used in the
default configuration:

1 experiment 1 was an initial raw trace collection; experiment 2 was an earlier validation test that revealed
a subtle bug in an earlier version of the timestamp driver that was embedded in the MultiInputAdapter

leading to a redesign of the timestamp driver (subsection 5.2).

34

6.3. Instrumentation validation and benchmarking

• I-sync packets provide address and contextID information; address information
is used to update the internal parser state but not forwarded to the specification
(explanation below); instead the contextID is forwarded

• active OutputFilterAdapter (subsection 5.3.4)

Results. Raw traces from ETB and TPIU showed 55 I-sync, 183 Branch address, and 15
Atom packets on core 1 after initial A-sync packets for both cores. Traces are fully repro-
ducible. Addresses are equal in all traces (deactivated ASLR). All 13 calls to the recursive
allocate() function (at 0x10514) are in the trace. ContextID values differ between the
traces (as expected) but are equal within one trace (single-threaded program).

The different configurations with different filter options worked correctly.

Conclusion. Results of CS parser match parsed output of raw trace using software ref-
erence implementation. The filters worked correctly. Filter configuration was set to the
default configuration mentioned above.

Experiment 5: continuous writing of output to disk (online mode)

Earlier experiments were run with data collection of the TeSSLa output in the output
FIFO (512 KiB), which is larger than the ETB (4 KiB) but not sufficient for longer running
programs. Thus, a new output mode was implemented in trace launch (option -z) that
uses a separate thread on core 0 to write the content of the output FIFO to a file while
the test program is running. This additionally allows online observation of e.g. longer
running programs by reading this written file in parallel. This can be used for online and
distributed RV (section 4.3)

Methods. The same test program and TeSSLa specification were used as in experiments
3 and 4. This TeSSLa output and the output of the bypass method (writing raw CS trace
to disk) were tested and compared with results in the earlier experiments.

Results. Identical results for raw traces and TeSSLa output with this new method, except
of expected different contextID values and small differences in the absolute timestamps,
as expected.

6.3 Instrumentation validation and benchmarking

Evaluation of program instrumentation tests various parts of the RV solution: instrumen-
tation library including wrapper, CS configuration to write ITM stimuli, ITM parser in the
CS parser, and correct processing of instrumentation events in the TeSSLa specification.
It consists of validation of correct functionality and benchmarking of the instrumentation
overhead in running programs.

6.3.1 Validation

Experiments 6 to 8: instrumentation signals

Methods. In experiments 6 and 7, the default TeSSLa specification and the same test
program (nested malloc) from experiment 4 were used. In experiment 8, a modified
version was used that avoided any printf().

35

6. Evaluation and Benchmarking

Two configurations were used for comparison: without instrumentation as baseline and
with preload instrumentation (option -P in trace launch).

Results. Experiments 6 to 8: the instrumented version showed all 12 signals for malloc()
and for free() with correct addresses for the pointers (reverse order in free as expected).
Thus, the instrumentation is correct. As before, all 13 expected calls of the recursive
allocate() function were in the output.

The jump addresses for malloc() and free() in glibc were also available as before, of
course with different addresses in the instrumented version due to the wrapper function.
However, as a technical detail: each branch address is found only 11 times in the trace
(also as before). The first jump to each glibc function is not a direct jump but the address
is first resolved in the Procedure Linkage Table (PLT) mechanism.

Thus, even when knowing the glibc function addresses in case of deactivated ASLR, not
all glibc calls could be tracked with function addresses alone. This is a limitation that
needs to be remembered when writing TeSSLa specifications with such purpose.

Experiment 6: While this experiment was not be designed to benchmark the instrumenta-
tion overhead, it was still expected that the execution of the instrumented program takes
longer than the non-instrumented program. The init phase to the first event for TeSSLa
was longer (13.0 ± 6.0 ms, range 9.5 to 19.9 ms) with instrumentation than without (2.3
± 0.1 ms) due to the constructor running in the instrumentation wrapper, as expected.
However, the run time after that surprisingly was shorter in the instrumented program
(0.37 ± 0.02 ms) than without instrumentation (0.6 ± 0.03 ms). This puzzling result was
confirmed with additional tests.

A ”trace density plot” (Figure 6.1)2 gave a good hint for the explanation that was then clar-
ified with experiments 7 and 8. While overall program execution does not relevantly differ
between instrumented run and baseline, there is a longer delay in the non-instrumented
program version early in the program trace.

Experiment 7: different configurations of the instrumentation and CSAL libraries were ex-
plored to reduce their outputs to stderr and stdout. In conclusion, the default library was
changed to avoid all printf() during initialization. CSAL library was left unchanged.

Experiment 8: Using the modified test program without printf() as well, the longer
init phase of the instrumented program remained (as expected) with 8.413 ± 0.957 ms
compared to 2.338 ± 0.091 ms (non-instrumented) to the first event. The average relative
run time after initialization was almost equal for both configurations 0.736 ± 0.035 ms,
95% CI [0.696, 0.776] with instrumentation compared to 0.758 ± 0.029 ms, 95% CI [0.725,
0.790] without.

Conclusion. Instrumentation signals are correctly sent and received. A puzzling side
observation of experiment 6 could be resolved.

2 Program execution can be observed at high time resolution. With current CS parser frequency of 125
MHz, there are discrete time intervals of 8 ns. Timestamps assigned to CS frames differ by at least 32 ns (16
B frames; max. input to CS parser 4 B / clock cycle).

36

6.3. Instrumentation validation and benchmarking

Figure 6.1: Experiment 6: trace density plots of instrumented and non-instrumented (base-
line) program traces. Relative time from first trace event is shown on y axis in relation to
event number on x axis. The flatter the curve, the more events per time.

6.3.2 Benchmarking

These experiments were designed to run for several seconds or even minutes generating
several GB of raw CS trace data to be parsed and processed by the TeSSLa specification.
Thus, filters were used in the specification to reduce the size of the output after processing.

TeSSLa can lift functions defined for values to apply them on event streams. This filter
(Listing 6.1) effectively reduces the number of events to one event per 100’000 input events
.

Listing 6.1: Filter macro
def filtered_malloc_count = filter(malloc_count ,

malloc_count % 100000 == 0)

Similar filters were used for the other instrumentation events. For addresses of the pro-
gram trace, only one count per 1× 106 addresses is forwarded.

With this, several GBs of raw trace could be processed to an output of several KiB without
dropping any data of the raw trace.

37

6. Evaluation and Benchmarking

Experiment 9: malloc/free single-threaded

Methods. A test program repeated 100 times: 1× 106 times allocating 8 B memory and
then free this memory. Time was measured inside of the program using clock gettime()

using the monotonic clock source. Each configuration was run 3 times. The program was
run with affinity for core 1.

Results. Without instrumentation, the program run in average for 41.8 s, generating a
4 GB long raw trace; average raw CS trace throughput 97.3 MB/s, peak 121.8 MB/s, no
drops. Thus, an average malloc() / free() call took 0.209 ± 0.000 µs. This average
includes very short calls that can be resolved in glibc directly and calls that need syscalls
to increase the heap.

With instrumentation, the program run in average for 118.5 s, generating a 5.5 GB long
raw trace; average raw CS trace throughput 47.0 MB/s, peak 51.6 MB/s, no drops. All
100× 106 malloc() and free() calls were reported with the ITM instrumentation. Filters
were chosen to detect even the lack of one signal. An average instrumented malloc() /
free() call took 0.593 ± 0.000 µs. Thus, average instrumentation overhead for malloc()
/ free() instrumentation is 0.384 µs.

In each configuration, over 700× 106 addresses were parsed from core 1 and processed
in TeSSLa, i.e. 16.7× 106 addresses/s in the baseline configuration. Time measurements
in the program and derived from first and last event in the processed trace matched (as
expected).

Discussion. Relative instrumentation cost for more typical programs, that do not only
consist of malloc() / free(), will be lower. Nevertheless, there is room for optimization
in the instrumentation code that is e.g. using regular CS access library calls to send stim-
uli to ITM. If the final write to the memory-mapped register *(unsigned int volatile

*)(d->local addr + off) = data; (code from CSAL) was done directly in the instru-
mentation wrapper, several function calls in the library could be saved. This is not imple-
mented yet. Main focus was on achieving reliable instrumentation first.

Experiment 10: malloc/free multi-threaded

Methods. Two threads run in parallel, one on each core. Each repeats 50 times: 1× 106

times allocating 8 B memory and then free this memory, as in experiment 9. The main goal
of this test was to see whether the instrumentation works correctly even in multi-threaded
programs.

To collect program traces of all threads, the -p option was used in trace launch that
disables filtering based on contextID. Otherwise, only the trace of the main thread would
be collected.

Results. Without instrumentation, the program run in average for 26.8 s, generating a
4.4 GB long raw trace; average raw CS trace throughput 165.2 MB/s, peak 190.2 MB/s,
no drops. Over 330× 106 addresses were parsed from each of the cores. Exact number
differ (interleaving). No perfect speed-up of 2 is expected due to the implementation of
malloc() and free().

With instrumentation, the program run in average for 68.8 s, generating a 5.8 GB long
raw trace; average raw CS trace throughput 82.4 MB/s, peak 96.7 MB/s, no drops. All

38

6.3. Instrumentation validation and benchmarking

100× 106 malloc() and free() calls were reported with the ITM instrumentation. Even
one missing signal would have been detected.

Experiments 11 and 18: lock/unlock, no contention

Methods. This test creates 255 threads to fill the internal hash map (section 5.6). A
barrier was used to allow these thread creations to be complete before proceeding. Then,
3 nested mutex locks are locked and unlocked 10× 106 times with an inner critical section
incrementing a counter. This locking/unlocking happens single-threaded in the main
thread with affinity to core 1 to avoid any contention. Time measurement as mentioned
before.

Time and traces were collected in 3 configurations: a) no instrumentation, b) slower in-
strumentation with 2 hashmap lookups, c) faster instrumentation with 1 hashmap lookup
(default). The same filtering TeSSLa specification was used as in experiments 9 and 10.

Please note: the instrumentation sends 2 signals for successfully acquired locks: lock
request and lock acquired. This can be used for some TeSSLa specifications. However, the
expensive hashmap lookup happens only once.

Results. All 30× 106 lock request, lock acquired and unlock signals were received in both
instrumentation options. Note: already missing one signal would be detected in the used
configuration. Results were reproducible.

A peak raw trace throughput was observed during the average 4.6 s run without instru-
mentation: 260.3 MB/s, average 256.0 MB/s for the 1.1 GB raw trace, no drops. Instru-
mented versions took significantly longer: average 72.5 s (slow instrumentation), 50.7 s
(faster instrumentation) with lower CS raw trace throughput of 20.1 MB/s and 35.3 MB/s
for the 1.5 and 1.7 GB long traces, respectively.

Lock is very fast without contention: average 0.077± 0.000 µs for each pthread mutex lock

/ pthread mutex unlock call. With slow instrumentation 1.203 ± 0.010 µs, average instru-
mentation cost 1.126 µs. With faster instrumentation 0.846 ± 0.003 µs, average instrumen-
tation cost 0.769 µs.

Discussion. The discussion of this relevant instrumentation overhead is in section 7.1.
During development of experiment 17, the instrumentation library needed to be adjusted:
the unlock signal had to be moved from after actual unlock function to before the func-
tion (i.e. into the critical section). Otherwise, due to the measured relevant overhead,
sometimes unlock and lock acquired signals of different threads were in wrong order. Ex-
periment 18 repeated experiment 11 with the new instrumentation library. Equal results
(as expected in the setting without contention).

Experiments 12 and 19: lock/unlock, with contention

This experiment evaluates whether all instrumentation signals can be received even in
case of many threads running in parallel on both cores, and to evaluate the effect of
contention on the instrumentation overhead. 255 threads were created on both cores.

39

6. Evaluation and Benchmarking

Each was repeating 100’000 times: acquire all 3 locks, increment a global variable in the
critical section, unlock all 3 locks.3

Methods. The experiment was run in 2 configurations: a) without instrumentation, b)
with default (faster) instrumentation. Each configuration was run 3 times. The program
was launched with -p option active to collect the program traces of all threads.

Results. All 76.5× 106 lock request, lock acquired and unlock signals were received.
Already one missing signal would have been detected.

Average of pthread mutex lock / pthread mutex unlock calls was longer in this exper-
iment due to the created contention in lock calls: 0.120 ± 0.004 µs without instrumen-
tation; 0.909 ± 0.000 µs with instrumentation. Average instrumentation cost remained
stable with 0.789 µs.

Discussion. The discussion of this relevant instrumentation overhead is in section 7.1.
This experiment was repeated as experiment 019 after the instrumentation library change
for experiment 017. Also here, signals were received correctly. Measured instrumentation
overhead was equal.

Experiment 13: Overhead of a syscall

This experiment was run to compare instrumentation overhead in the current instrumen-
tation library using ITM stimuli with other signal paths, e.g. CONTEXTIDR via kernel [31].
Thus, overhead of a syscall was measured for the specific Zynq board with specific Linux
kernel and user environment including glibc as used for all other experiments.

Methods. A test programm called a non-existing syscall number 1024 1× 106 times; in a
second test getpid() was called 1× 106 times. Time measurement as described before. In
the used glibc 2.27 getpid() is not cached by glibc; it is also not listed in vDSO for ARM.

Results. One average empty syscall (nr 1024) takes 0.431 ± 0.000 µs (n=4); one aver-
age getpid() takes 0.490 ± 0.000 µs (n=4). This makes sense for the small amount of
computation that is done in getpid()

6.4 Runtime verification with TeSSLa specifications

Three runtime verification scenarios were designed with TeSSLa specifications and test
programs that satisfy or violate the specification (Table 6.1). The detailed properties are
described in each experiment. Additionally, the experiments were designed to illustrate
some pitfalls when writing TeSSLa specifications and to illustrate different usage modes
of the RV system.

Properties defined in TeSSLa specifications are evaluated many times during program
execution reporting the evaluation for the program trace up to this point in time. The
number of evaluations depends on the defined specification based on processing of the

3 While the lock order matters in nested locks, the unlock order does not matter as long as a released
lock is not acquired again. To have a bit more interesting contention, the nested locks were released in the
same order as acquired (as e.g. used for list traversal) and not in reverse order (as typically released with
RAII in C++ or synchronised blocks in Java).

40

6.4. Runtime verification with TeSSLa specifications

Table 6.1: Runtime verification with TeSSLa specifications: overview

Experiment Scenario Methods

14 Memory allocation preload instrumentation, fixed-capacity set
15 Event handler, simple direct tracking of function calls
16 Event handler, advanced additionally fixed-capacity maps
17 Critical section and locks instrumentation, fixed-capacity sets

trace stream in TeSSLa. The final value reports whether the property holds for the entire
program.

Experiment 14: Memory allocation

Property. All allocated memory blocks are deallocated at the end of the program run.
Such a property can be expressed in LTL as:

�(x = malloc() −→ ♦ f ree(x))

TeSSLa. A fixed-capacity set is used to track addresses of memory allocations. Addresses
are added to the set at allocation and removed upon deallocation. The set size is used to
define the property in combination with overflow detection. A trivial specification that
only counts the number of allocations and deallocations would be insufficient, of course.

As an additional side-property, the specification tracks whether malloc() would return
the same address before it has been deallocated with free().4 This property is only valid
if no overflow of the set has happened, similar to main property.

Limitation: In the current prototype version of the TeSSLa compiler, the capacity of the
set had to be limited to 8. The discussion of this important limitation is in section 7.2.

Listing 6.2 shows the key components of the specification using a fixed-capacity set (List-
ing B.3) and helper predicate none() (Listing B.1).

Listing 6.2: Memory allocation
-- instrumentation signals: in_malloc and in_free

def key = merge(in_malloc , in_free)

def allocated = lookup(key , time(in_malloc) == time(key), 8)

def n_allocations = allocated ._1

def overflow_flag = allocated ._2

def overflow = overflow_flag == 0

def never_overflow = none(overflow)

def all_allocations_freed = n_allocations == 0 && never_overflow

4 This property came as an example for the fixed-capacity set from Daniel Thoma. It was then embedded
into the the none() helper predicate (Listing B.1).

41

6. Evaluation and Benchmarking

-- side property: "double malloc", i.e. malloc () returns an address

-- before it has been deallocated with free()

-- note: only valid if no overflow

def changed = prev(n_allocations) != n_allocations

def double_malloc = !changed && time(in_malloc) == time(key)

def never_double_malloc = none(double_malloc)

-- from stdlib

def prev[T](events: Events[T]) = last(events , events)

Methods. A modified nested malloc program allows four test configurations.

• default: 8 memory allocations and deallocations

• missing free: one memory block is not deallocated

• additional allocation after freeing the initial ones (not violating the set capacity)

• overflow: 12 memory allocations with given capacity of 8

Instrumentation signals of the preloaded instrumentation wrapper were used in the TeSSLa
specification.

Results. All instrumentation signals were received. The defined property was satisfied
by the default configuration. Both property violations and the overflow were detected
correctly. Also the side-property ”double malloc” was evaluated correctly.

Experiment 15: event handler, simple

Setting. Multiple client threads enqueue requests into a thread-safe queue implementa-
tion. A single-threaded event handler processes all requests similar to e.g. user interface
event handlers. One request type (named A) generated by one client thread is tracked
in detail: request, start processing, finished processing. Configuration guarantees that no
new request A is requested before the former has finished processing. Either 3 or 19 other
threads request another type simulating any number of other request types.

Property. Queueing time of all requests type A ≤ 5 ms.

TeSSLa. A simple solution is shown in Listing 6.3 using helper predicate all() (List-
ing B.1) and a macro to detect function calls in the address streams of both cores (List-
ing B.2). The function addresses can be found with the nm tool. A tool is provided in the
project to determine the binary encoding of time given in either s, ms, µs or ns.

Listing 6.3: Event handler: queueing time property, simple
-- adjust addresses to compiled program binary

def request_a = function_call(0x00010eb0)

def start_a = function_call(0x00010c3c)

def finished_a = function_call(0x00010c54)

def simple_queueing_time =

time(start_a) - last(time(request_a), start_a)

42

6.4. Runtime verification with TeSSLa specifications

def simple_response_time =

time(finished_a) - last(time(request_a), finished_a)

-- queueing time <= 5 ms

def p = simple_queueing_time <= 0x989680

def simple_property = all(p)

Methods. The test program (as described above) was designed to satisfy the property
with 3 additional threads and to violate it with 19 threads on the 2 core Zynq board.
Other configurations (service time of the request, request interval for the threads) were
kept identical in both configurations. Request interval was identical for all threads: 20 ms.
This guaranteed that a request A was finished before a new request was issued. Request
type A was requested 10 times.

Results. Time measurements were correct. Queueing time for request type A in configu-
ration with 3 additional threads was in range 1.1 to 3.4 ms, satisfying the property; with
19 additional threads in range 8.9 to 12.0 ms, violating the property. The property was
evaluated correctly for both configurations.

Discussion. An important limitation of the current prototype compiler is discussed in
section 7.2 (delay() functionality).

Experiment 16: event handler, advanced

Setting. Identical setting as in experiment 15 with the exception that the request interval
for all threads is reduced from 20 ms to 2 ms. Thus, some requests type A are issued
before former requests have finished or even started processing (long queue). This experi-
ment was designed to illustrate a pitfall of the simple specification and to show a solution
by using additional tags.

Property. Queueing time of all requests type A ≤ 5 ms.

TeSSLa. The simple time calculation used above fails in this scenario by under-estimating
queueing and response time. When evaluating queueing time for e.g. request number 3
at time point time(start a) already request number 4 or 5 may have been issued. Thus,
last(time(request a), start a) contains the time of this newer request. The same
applies to response time.

To keep track of events that belong to each other, i.e. request, start, finished for spe-
cific request number, the fixed-capacity set provided by Daniel Thoma (Listing B.3) was
extended to a fixed-capacity map (Listing B.4). This map implementation has similar lim-
itations as the set implementation (section 7.2 for discussion). In this example, the count
macro (Listing 4.1) was used to provide tags. Alternatively, tags could be provided by the
program using e.g. instrumentation signals.

Listing 6.4: Event handler: queueing time property, advanced
-- adjust addresses to compiled program binary

def request_a = function_call(0x00010eb0)

def start_a = function_call(0x00010c3c)

def finished_a = function_call(0x00010c54)

43

6. Evaluation and Benchmarking

def request_a_count = count(request_a)

def start_a_count = count(start_a)

def finished_a_count = count(finished_a)

def key1 = merge(request_a_count , start_a_count)

def value1 = time(key1)

def store_kv_pair1 = time(request_a_count) == time(key1)

def tracking_map1 = lookup_map(key1, value1, store_kv_pair1, 8)

def key2 = merge(request_a_count , finished_a_count)

def value2 = time(key2)

def store_kv_pair2 = time(request_a_count) == time(key2)

def tracking_map2 = lookup_map(key2, value2, store_kv_pair2, 8)

def queueing_time_with_map = filter(time(start_a) -

tracking_map1._2, time(tracking_map 1._2) == time(start_a))

def response_time_with_map = filter(time(finished_a) -

tracking_map2._2, time(tracking_map 2._2) == time(finished_a))

-- queueing time <= 5 ms

def q = queueing_time_with_map <= 0x989680

def property_with_map = all(q)

Methods. As described in experiment 15.

Results. All time calculations with the map method were correct. As soon as requests
type A were enqueued before the processing of earlier requests had started (for queueing
time) or finished (for response time), these time intervals were too short as explained
above. The actual subtraction of time was correct, of course. The property was evaluated
correctly for all configurations.

Discussion. An important limitation of the current prototype compiler is discussed in
section 7.2 (delay() functionality).

Technical note. The TeSSLa specifications for experiment 15 and 16 were in one TeSSLa
file: 211 lines including interface code (Listing A.1), output definitions, and comments. It
compiled via Chisel to 41’236 lines of Verilog code. Combined with CS parser code and
AXI/TPIU controller, 56% of available LUT and 29% of available BRAM were used in the
FPGA.

Experiment 20: Critical section protected by lock

This experiment was deliberately designed to illustrate current limitations in the instru-
mentation library and TeSSLa functionality in the prototype compiler.5 Future implemen-
tations will improve.

5 Technical notes: 1) As can be seen in Listing 6.5, testing locks needs some complexity in the specification.
Thus, only while developing the specification for this experiment, a subtle problem was detected in the

44

6.4. Runtime verification with TeSSLa specifications

Setting. 8 threads are concurrently calling a function critical section(), which incre-
ments a shared variable by one with each call. The shared variable is initialised to 0. A
barrier lets the threads wait until all are ready. Each thread repeats 128 times: acquire
lock, call this function once, release lock.

As a configuration option to violate the property, the main thread calls critical section()

once without lock at some time while all 8 threads are working.

Property. Critical section only executed when lock is acquired and only executed once
per lock.

TeSSLa. Different ways can be chosen to implement this property in a TeSSLa specifica-
tion. For this example at the current state of the TeSSLa compiler and instrumentation
infrastructure, several sub-properties are implemented in the specification to implement
the property:6

• max. one lock is used

• lock is held by max. one thread

• critical section not accessed if no lock is held

• critical section only called once per lock; this implies that another thread does not
access the critical section while another thread holds the lock

• all these sub-properties must be satisfied all the time for the property output of the
specification to indicate true

Thus, an additional thread does not access a critical section while no lock is held nor
when a lock is held, which implies all the time. The TeSSLa specification is shown in
Listing 6.5.

There are two limitations at the moment: 1) Tracking more than one lock would require
more advanced features, like maps of sets. Thus, the initial check that only one lock is
used. Such additional data structures – or other functions to allow such tracking – may
be implemented in the future.

2) Of course, the specification would be strengthened significantly if it could also directly
assert that the call to the critical section was made by the identical thread as the thread
that just acquired the lock. This can be achieved by using the contextID values from CS
I-sync and Context ID packets, that are parsed in the PTM parser and sent as inputs
to the TeSSLa specification for each core separately. However, the current version of the
instrumentation library does not embed the core ID into the instrumentation signal, which

instrumentation library. Due to the relevant computing time in the instrumentation, sending the ITM signal
after unlock had to be moved to before the actual unlock operation, i.e. into the critical section. Thus,
potentially affected experiments of this change (experiments 11 and 12) were repeated as experiments 18
and 19 (section 6.3). 2) This experiment was first run as number 17. It had a small bug in the specification.
The waiting set used the acquired instead of requested event to set the store-key flag. This set was only
used for illustration/demonstration purpose and does not affect the property, which was correctly evaluated
already in experiment 17. Nevertheless, the experiment was repeated as experiment 20 that also reports this
information correctly.

6 A trivial specification (count number of lock calls and compare with number of critical section calls)
would not suffice for the property.

45

6. Evaluation and Benchmarking

would be required to correlate it with a contextID in the TeSSLa specification. This is an
option to consider for the future.7 However, it adds to to the instrumentation overhead.

Specifications that work with function call mapping inside of the specification (Listing
B.2 used in experiments 15 and 16) could use the information from contextID already
now to map specific calls to specific threads. Program trace information from each core
is provided separately to the TeSSLa specification.

Listing 6.5: Critical section protected by lock
-- 1) track critical section --

def critical_section = itm_value13

-- for illustration

def cs_count = count(critical_section)

-- a workaround: types of both arguments in last()

-- must match at the moment

def cs_as_bool = first(true , critical_section)

-- 2) assure that max. one lock is used: required --

def locks_set = lookup(in_lock_request_addr , true , 3)

def locks_count = locks_set ._1

def locks_assert = all(locks_count <= 1)

-- 3) track threads waiting for locks: optional , for illustration --

def waiting_key = merge(in_lock_request_tid , in_lock_acquired_tid)

def waiting_set =

lookup(waiting_key ,

time(in_lock_request_tid) == time(waiting_key), 8)

def waiting_count = waiting_set._1

def waiting_overflow = waiting_set._2 == 0

def waiting_never_overflow = none(waiting_overflow)

-- 4) track threads currently holding the lock: required --

-- note: count must be <= 1 at all time

def locked_key = merge(in_lock_acquired_tid , in_unlock_tid)

def locked_set =

lookup(locked_key ,

time(in_lock_acquired_tid) == time(locked_key), 8)

def locked_count = locked_set ._1

def locked_overflow = locked_set._2 == 0

def locked_never_overflow = none(locked_overflow)

7 An early test version of the instrumentation library actually used separate core specific ITM ports for
each instrumentation signal using twice as many ports on the 2 core system. sched getcpu() was used
to determine the core inside of the instrumentation wrapper. This functionality was removed because it
would not scale to more cores and to avoid additional instrumentation overhead. However, with different
instrumentation channels than ITM, individual instrumentation signals could be implemented for each core
even on a multi-core system such as Enzian.

46

6.4. Runtime verification with TeSSLa specifications

def locked_assert = all(locked_count <= 1)

-- 5) assert that critical_section is only accessed

-- if one lock is held

def cs_with_lock = last(locked_count , critical_section) == 1

def cs_assert1 = all(cs_with_lock)

-- 6) assert that critical_section is only called once

-- when lock is held

-- note: dependent on thread interleaving , an unlocked

-- access to the critical section can happen while

-- another thread is holding a lock.

def cs_allowed = {

-- this is a simple version that works with one lock

-- an instance needs to be used for each lock ,

-- which requires e.g. maps

-- see *_addr streams to distinguish locks

def acquired_lock = first(true , in_lock_acquired)

def released_lock = first(false , in_unlock)

def cs_started = first(false , critical_section)

merge(cs_started , merge(released_lock , acquired_lock))

}

def current_cs_allowed = last(cs_allowed , cs_as_bool)

def cs_assert2 = all(current_cs_allowed)

-- 7) combine assertions and required side -conditions

def cs_assertion = cs_assert1 && cs_assert2 &&

locks_assert && locked_assert

-- optional: to have fewer output signals

def filtered_cs_assertion = filter(cs_assertion , cs_as_bool)

Methods. The mentioned test program was run 3 times with each configuration.

Results. In all runs, the defined property could be evaluated correctly under the limita-
tions discussed above.

47

6. Evaluation and Benchmarking

6.5 Summary

During evaluation, correct parsing of raw CS traces and instrumentation signals could be
demonstrated.

Instrumentation overhead could be determined for wrapped memory allocation and mu-
tex functions (summary in Table 6.2; default instrumentation settings; data collected and
analysed in experiments 9-12, 18, 19).

Table 6.2: Summary: average instrumentation overhead. SD < 0.005 µs for all averages;
n=3. O:D ratio = Overhead:Direct function call ratio.

Functions Direct [µs] Instrumented [µs] Overhead [µs] O:D ratio

malloc/free 0.209 0.593 0.384 1.8
lock/unlock, no contention 0.077 0.846 0.769 10.0
lock/unlock, some contention 0.120 0.909 0.789 6.6

And finally, complete runtime verifications could be illustrated for three properties in dif-
ferent application domains (Table 6.1). Test programs were designed to satisfy or violate
the defined properties. TeSSLa specifications could be used to evaluate the properties on
FPGA while the programs were running on the CPU. All evaluations were correct.

48

Chapter 7

Discussion

7.1 Instrumentation overhead

Benchmarking (section 6.3) has revealed a relevant instrumentation overhead in the order
of average malloc/free call itself but about 10x the absolute time of lock/unlock calls (Ta-
ble 6.2). This overhead is compared to other solutions below in section 7.3. It significantly
affects runtime of programs that consist only of such calls like the benchmark programs.
However, relative cost of instrumentation may be less pronounced in typical programs
where also other processing is done in addition to the instrumented calls.

Nevertheless, there is room for optimization in the instrumentation library. The primary
focus has been a reliably working system. Optimisation opportunities:

Direct writing into mapped register. Currently, CSAL library functions are used to write
stimuli into the memory-mapped register. The instrumentation wrapper could be modi-
fied to write directly into the registers, which would save several function calls.

Instrumentation directly in wrapper. To allow flexible use of the instrumentation library
also in other scenarios like compile-time instrumentation (Table 2.1), the instrumentation
wrapper calls the instrumentation function of the library. Also this call could be prevented
by directly have all implementations inside of the wrapper.

For mutex/lock/barrier. To merge thread ID and mutex/lock/barrier ID into one signal, a
hashmap lookup needs to be done at each instrumentation call. The currently used library
uthash [18] was chosen for the advantages mentioned in the implementation (section 5.6).
However, there are much faster libraries that could be used instead.

Additionally, in systems like Enzian, a different instrumentation signal path needs to be
used than ITM (upgrade path in subsection 7.4.2). This gives the opportunity to even
avoid such a hashmap lookup completely. This was another reason why no additional
effort was put into optimising this instrumentation solution for speed at the moment.

7.2 Limitations of the TeSSLa compiler prototype

The current TeSSLa compiler prototype can be used successfully to run many TeSSLa
specifications in this CPU/FPGA hybrid RV solution (section 6.4). However, it cannot

49

7. Discussion

compile all language features yet.

Events in the future. For example, delay() could not yet be used. This function is re-
quired to write powerful specifications that can define events in the future. For example:
The event handler specifications used in the evaluation (Listings 6.3 and 6.4) recognize
the prolonged queueing time at the moment when processing of the event starts. Us-
ing delay(), a future event can already be defined at the time when the request event
is observed, which can then be used to recognize such a property violation at the time
when the processing should have started and not when it actually started.1 This is the de-
sired functionality for an online RV system. There is a nice Stimulus Response Pattern

example on www.tessla.io that illustrates this functionality.

Data structures. This limitation includes also important data structures, like sets and
maps, that are available in the software version of TeSSLa but not yet in the prototype
compiler. The currently used TeSSLa macros for fixed-capacity set (provided by Daniel
Thoma; Listing B.3) and fixed-capacity map (Listing B.4) are clear workarounds at the
moment until a better solution is available in the upcoming new compiler.

Both constructs do not scale beyond capacity 15 (set) and 8 (map) at the moment. One
cause of this limitation (in tessla2chisel) is already fixed in the next version of the compiler.
However, when creating the examples, I had also to reduce the set capacity to 8 because
larger sets could not be implemented at clock frequency 50 MHz (negative slack). Thus,
there is another upper bound in the generated Chisel/Verilog code.

Additionally, they have limited functionality at the moment. Reading removes the element
from sets and maps. Thus, it would need to be stored again to implement updates of a
set, which adds complexity.

In contrast to software implementations, maps and sets must have a fixed capacity for
synthesis on FPGA. However, instead of implementing them in TeSSLa itself, they could
be implemented as Chisel modules that can then be instantiated with configured capacity
from default map and set data structures in TeSSLa. Such a direct implementation in
Chisel offers a lot of room for optimization compared to the current workarounds in
TeSSLa. It could also add more features (like updates) to provide full semantics of typical
software sets/maps.

Processing bandwidth. With a maximum event rate of 25 M events/s per input adapter
(Table 4.1), the specification network is the bottleneck at the moment. A future version of
the compiler can improve (some suggestions in subsection 7.4.3).

On the other hand, filters in the CS trace parsers, in particular for PTM/ETM traces, can
be adjusted. Currently, for evaluation of the initial system, the PTM parser forwards all
decompressed addresses of Branch address and Waypoint update packets to the speci-
fication.2 The parser is prepared to use additional filters, e.g. for address ranges. Many
of the transmitted addresses are not needed by actual specifications. This can relevantly
reduce the number of events that are sent to the TeSSLa computation network.

1 Worst-case scenario: a property violation might be missed completely if processing never starts. Other
workaround solutions to detect this might also evaluate this property too late for online RV.

2 The address of I-sync packets is not forwarded but only used to adjust the internal state of the parser.
ContextID information of the I-sync packets is forwarded instead.

50

www.tessla.io

7.3. Related work

Therefore, for practical applications, the bottleneck is not as severe as it seems to be when
comparing the CS parser output and TeSSLa input bandwidths for event rates (Table 4.1).

7.3 Related work

Software TeSSLa implementation

The software version of TeSSLa can e.g. be accessed on www.tessla.io. As mentioned
above, the current compiler prototype cannot yet handle all language features. However,
a new compiler version is being built in Lübeck at the time.

Existing FPGA TeSSLa implementation

There exists already a TeSSLa implementation in FPGA that uses predefined modules,
which are reconfigured to define the specification (section 3.2). Because this solution is
closed source and proprietary, no comparisons could be made with this system. Concep-
tually, the RV solution of this thesis should be able to allow more complex specifications
and/or higher CS raw trace bandwidth than configurable modular system (section 3.2 for
explanation). Synthesising specific FPGA solutions for each TeSSLa specification has the
disadvantage that it takes much more time than a reconfiguration of a system. However,
once a specification is synthesised, its bit file can be loaded to the FPGA almost as fast as
such a reconfiguration.

Alternative instrumentation path via CONTEXTIDR

Instrumentation overhead for glibc functions (malloc/free) is 0.384 µs with the current
library using ITM. An alternative instrumentation using CONTEXTIDR via syscall has
been described [31] (section 3.3 for details). A raw syscall takes 0.431 µs on the Zynq board
with currently used Linux version and user environment (experiment 13 in section 6.3).

Thus, the currently used instrumentation method is faster even without the optimizations
mentioned above (section 7.1).

The also mentioned method of adding the CONTEXTIDR modification to an existing
syscall (piggy-back), which has an overhead of only 0.014 µs (on the slower Zed board
used in the paper [31]), cannot be applied to instrumentation of glibc functions that may
not issue a syscall with each call.

Other CPU/FPGA hybrid solutions

The CPU/FPGA hybrid solution mentioned above [31] can be used to collect instrumen-
tation data of programs that can be used for runtime verification in any software system
offline afterwards. The solution presented in this thesis, additionally forwards addresses
and contextID values from the program trace, ITM and FTM signals. Additionally, it em-
beds a TeSSLa specification on the FPGA that allows online runtime verification while the
program is running.

CS program traces have been used to integrate monitoring for Code Reuse Attacks (CRA)
into CPU/FPGA hybrid systems [24]. ROP and JOP attacks can be detected implementing

51

www.tessla.io

7. Discussion

known algorithms for this purpose. In this solution, memory access was observed in
addition to the program trace. This is not yet available in the current RV system of this
thesis. Conceptually, TeSSLa could be used to write such applications. However, the
current prototype compiler is too limited.

Other runtime verification solutions

Correct evaluation of three different specifications in different domains could be demon-
strated for the implemented RV system (section 6.4). Thus, it is a working RV system as
other described RV systems [1, 7, 10, 11, 19, 22, 25, 29].

Most solutions run in software offline after the program. The RV solution presented here
can evaluate the specification online while the program is running. It can also write the
output data stream of the TeSSLa to disk while the program under test is running. Thus,
true online monitoring of an even longer running program is possible.

Additionally, this output can be forwarded via network connection to a larger specifica-
tion server that collects and processes such reduced data streams of many systems in
a rack or even server farm. Also on such a system, processing can be implemented in
TeSSLa, creating a hybrid distributed specification system that scales.

7.4 Future work

7.4.1 Runtime verification of CPU/FPGA hybrid applications

The current RV system can already include signals from FPGA into the CS stream and
use this information in a TeSSLa specification. It has been used during development to
send internal signals of the parsers to the output stream.

Thus, not only software but CPU/FGPA hybrid applications can be verified by TeSSLa
specifications. Such an application could not yet be tested.

7.4.2 Migration path to ThunderX / Enzian

Many of the gained insights on the Zynq board prototype are key for the future port
to a more complex CPU/FPGA hybrid system like Enzian. This includes in particular
the method to scale TeSSLa’s input port to multiple inputs without merging (subsection
5.2). The following upgrade path includes various steps that I had planed for this thesis
already but could not execute due to delays.

1. Collect CS traces from an Enzian prototype. The source codes for a patched version
of the ARM trusted firmware (ATF) and of the received trace collecting library (with
patches to compile) are in our internal code repository.

2. Transfer of trace data to the FPGA side. A PCI express connection between CPU and
FPGA sides can be used as a first start. Mapped memory, that is using the cache
coherency protocol of the CPU/FPGA interconnect, will provide more bandwidth
and lower latency. There are additional options as well.

3. The CS streams are not multiplexed in frames as on the Zynq board. Thus, no
demultiplexing will be needed. The various CS traces can be connected with the

52

7.4. Future work

various parsers. However, the input on the FPGA needs to be adjusted to translate
the input stream into the required buffer format (count, buffer) and data transfer
frequency (currently set to once per 4 clock cycles) as required by the parsers. Ad-
ditionally, a timestamp needs to be provided to the parsers similarly to the one
generated in the Frame Synchronizer.

4. The Enzian system does not offer ITM nor FTM infrastructure as on the Zynq board.
However, there are clear options to integrate also instrumentation data and FPGA
fabric data into the system. As a suggestion: memory mapping via cache coherency
protocol can be used for instrumentation data. This can start simple as one memory
mapped ”register” and can be extended to multiple such registers providing mul-
tiple ports even for each traced CPU. Of course, parsing needs to be adjusted. An
(asynchronous) FIFO can be used for fabric inputs.

5. The current PTM parser needs to be extended to the ETMv4 [4] specification, which
has additional features. As a first step, focus should be on the program trace alone.
To keep clock frequency high or increase it, I planned adding additional states in
this parser to handle long packets in separate computation steps. Additional data
parts can be added.

6. An extended version of the Timestamp Driver, including a suggestion for a new
time/data width is already in our internal code repository (folder fpga64).

7. The current tessla2chisel compiler and tessla-synthesis can easily be adjusted to the
new number of inputs and to the wider time/data types. A new version of the
compiler may increase input event rate (suggestions in subsection 7.4.3). Higher
clock frequencies should be tested in all cases on the faster FPGA architecture used
in Enzian.

Of course, any step needs to be adjusted to findings that will only be available after
running some tests. I have learned that there may always be smaller to larger surprises.

7.4.3 TeSSLa to Verilog compiler

Work has already started at the Institut für Softwaretechnik und Programmiersprachen,
Universität zu Lübeck, Germany for a new TeSSLa compiler. Some new features will be
influenced by experiences gained in this project with the prototype compiler.

Optimization of Chisel modules. It is worthwhile to analyse the currently used Chisel
modules in detail. If the clock frequency limiting modules can be modified into small
pipelines of smaller processing steps, then the clock frequency of the entire specification
can be increased leading to a relevant bandwidth increase. This work may already have
started with the new compiler.

Optimization of TeSSLa to Chisel compilation. There is optimisation potential in the
TeSSLa to core TeSSLa and core TeSSLa to Chisel compilation steps. This will enable
more complex specifications.

Direct Chisel implementations of macros. Several complex macros are implemented in
TeSSLa itself at the moment. This includes the workaround fixed-capacity set (Listing B.3)
and map (Listing B.4) macros. More efficient implementations can be written in Chisel.
However, to instantiate such modules, the compilation process needs to be adjusted.

53

7. Discussion

At the moment, a TeSSLa specification is compiled to core TeSSLa language first, which is
then used for compilation to Chisel. The initial compilation step needs to be adjusted to
forward e.g. maps, sets, and other defined macros as is to the Chisel compiler. In this case,
even regular maps and sets of TeSSLa could be used in the specification as they are used
in the software version of TeSSLa. These could be translated to fixed-capacity variants
with configurable capacity.

Such direct implementations could be applied to other complex macros as well, in partic-
ular for macros of the new TeSSLa standard library, which is being developed in Lübeck
at the moment.

54

Chapter 8

Conclusion

The presented solution in this thesis offers a complete and working runtime verification
system on Xilinx Zynq-7000 SoC using ARM CoreSight with CS trace parsing and verifi-
cation with a TeSSLa specification on the FPGA.

Programs can be instrumented using ITM. Additional fabric traces of the FPGA can be
integrated into the CS stream and processed by the CS parser and specification.

A solution could be found to feed multiple event streams of different sources in parallel
into the TeSSLa stream processing network. This is a critical step to scale this system
towards multi-core systems like Enzian.

Specifications in the experiments were designed specifically to explore the boundaries of
the current instrumentation library and TeSSLa compiler. Future upgrades of the TeSSLa
compiler – currently being developed at the Institut für Softwaretechnik und Program-
miersprachen, Universität zu Lübeck, Germany – will allow more complex specifications
to run.

Three different specifications of different domains were tested on the current RV system
with TeSSLa specifications and programs satisfying and violating the properties. All prop-
erty evaluations were correct.

The system can be used for online runtime verification. The output of the TeSSLa specifi-
cation can be read and forwarded to other computers, e.g. a dedicated specification server,
while the program-under-test is running. This can be used for distributed RV, which is
another critical step for rack-scale runtime verification.

An upgrade path has been shown for the Enzian CPU/FPGA hybrid system.

Overall, the current RV solution is a step stone towards the larger goal of rack-scale
runtime verification [9].

55

Appendix A

Reference TeSSLa Interfaces

The tessla2chisel compiler maps input and output labels in alphabetical order to in-
ternal data stream indices. All TeSSLa specifications must adhere to the reference input
interface (Listing A.1).

Instrumentation data can be accessed with the reference instrumentation mapping (List-
ing A.2).

Output labels can be chosen arbitrarily. However, they are multiplexed into the output
interface in alphabetical order. The current system, therefore, uses an explicit mapping to
dedicated output labels to make this order clearly visible (Listing A.3).

Listing A.1: TeSSLa interface: reference input interface
-- version 2019 -07 -30

-- input interface ---

in etm0_addr: Events[Int]

in etm0_ value1_ contextid: Events[Int]

in etm0_ value2: Events[Int]

in etm0_ value3_ error: Events[Int]

in etm1_addr: Events[Int]

in etm1_ value1_ contextid: Events[Int]

in etm1_ value2: Events[Int]

in etm1_ value3_ error: Events[Int]

in ftm_value0: Events[Int]

in ftm_value1: Events[Int]

in ftm_value2: Events[Int]

in ftm_value3_ error: Events[Int]

in itm_value 00: Events[Int]

in itm_value 01: Events[Int]

in itm_value 02: Events[Int]

in itm_value 03: Events[Int]

in itm_value 04: Events[Int]

57

A. Reference TeSSLa Interfaces

in itm_value 05: Events[Int]

in itm_value 06: Events[Int]

in itm_value 07: Events[Int]

in itm_value 08: Events[Int]

in itm_value 09: Events[Int]

in itm_value 10: Events[Int]

in itm_value 11: Events[Int]

in itm_value 12: Events[Int]

in itm_value 13: Events[Int]

in itm_value 14: Events[Int]

in itm_value 15: Events[Int]

in itm_value 16: Events[Int]

in itm_value 17: Events[Int]

in itm_value 18: Events[Int]

in itm_value 19: Events[Int]

in itm_value 20: Events[Int]

in itm_value 21: Events[Int]

in itm_value 22: Events[Int]

in itm_value 23: Events[Int]

in itm_value 24: Events[Int]

in itm_value 25: Events[Int]

in itm_value 26: Events[Int]

in itm_value 27: Events[Int]

in itm_value 28: Events[Int]

in itm_value 29: Events[Int]

in itm_value 30: Events[Int]

in itm_value 31: Events[Int]

in itm_value 32_ error: Events[Int]

-- contextID consist of 24 bits processID/threadID and 8 bits ASID

-- note: processID should be unique per process

-- however , testing has shown that it is even unique per thread in

-- multi -threaded programs (see pthread)

-- in default configuration , the PTM parser sends contextID

-- only if it has changed

def etm0_ thread_id = (etm0_ value1_ contextid >> 8) & 0x00 ffffff

def etm0_asid = etm0_ value1_ contextid & 0x000000 ff

def etm1_ thread_id = (etm1_ value1_ contextid >> 8) & 0x00 ffffff

def etm1_asid = etm1_ value1_ contextid & 0x000000 ff

58

Listing A.2: TeSSLa interface: instrumentation library reference mapping
-- version 2019 -07 -30

-- reference mapping of current instrumentation library --------------

-- memory: address of allocated / freed memory block

def in_malloc = itm_value00

def in_free = itm_value01

-- concatenation of thread -id and mutex/lock/barrier address

-- mask 0xff 000000 contains mapped thread -id [0 ,255]

-- mask 0x00 ffffff contains 24 bit representation of the

-- mutex/lock/barrier address

-- precise address representation depends on configuration of

-- the instrumentation library:

-- see CAT_USE_FAST_MODE flag

def in_lock_request = itm_value02

def in_lock_acquired = itm_value03

def in_lock_not_acquired = itm_value04

def in_unlock = itm_value05

def in_rd_lock_request = itm_value06

def in_rd_lock_acquired = itm_value07

def in_rd_lock_not_acquired = itm_value08

def in_wr_lock_request = itm_value09

def in_wr_lock_acquired = itm_value10

def in_wr_lock_not_acquired = itm_value11

def in_barrier_wait = itm_value12

def in_info = itm_value30

def in_error = itm_value31

-- splitting tid and mutex/lock/barrier address examples:

-- technical note: right shift must happen *before* masking

-- 0xff 000000 for direct masking cannot be handled properly in

-- the TeSSLa compiler pipeline at the moment

def in_lock_request_tid = (in_lock_request >> 24) & 0x000000 ff

def in_lock_request_addr = in_lock_request & 0x00 ffffff

def in_lock_acquired_tid = (in_lock_acquired >> 24) & 0x000000 ff

def in_lock_acquired_addr = in_lock_acquired & 0x00 ffffff

def in_unlock_tid = (in_unlock >> 24) & 0x000000 ff

def in_unlock_addr = in_unlock & 0x00 ffffff

59

A. Reference TeSSLa Interfaces

Listing A.3: TeSSLa interface: reference output interface
-- output: can be adjusted; outputs 000 to 255 can be used ---

out output 000

out output 001

out output 002

out output 003

out output 004

out output 005

out output 006

out output 007

out output 008

out output 009

out output 010

out output 011

out output 012

out output 013

out output 014

out output 015

out output 016

out output 017

out output 018

out output 019

out output 020

-- etc. for all used outputs

60

Appendix B

TeSSLa Language Snippets

Listing B.1: TeSSLa: helper predicates
def all(p: Events[Bool]) = c where {

-- all events must be true

-- first result with first event

def c: Events[Bool] = merge(last(c, p), true) && p

}

def none(p: Events[Bool]) = c where {

-- no true events

-- first result before any events

def c: Events[Bool] = merge(last(c, p) && (!p), true)

}

def some(p: Events[Bool]) = c where {

-- at least one event must be true

-- first result with first event

def c: Events[Bool] = merge(last(c, p), false) || p

}

def some_with_init(p: Events[Bool]) = c where {

-- at least one event must be true

-- first result before any events ,

-- i.e. captures the case that no event was received at all

def c: Events[Bool] = merge(last(c, p) || p, false)

}

61

B. TeSSLa Language Snippets

Listing B.2: TeSSLa: function call() macro
-- syntax follows function_call() macro on tessla.io playground ,

-- which can take function names as argument

def function_call(function_address: Int) = c where {

-- filter first and merge second to avoid huge bottleneck

def a = filter(etm0_addr , etm0_addr == function_address)

def b = filter(etm1_addr , etm1_addr == function_address)

def c = merge(a, b)

}

62

Listing B.3: TeSSLa: fixed-capacity set
-- fixed -capacity set

-- TeSSLa macro provided by Daniel Thoma , University of Luebeck ,

-- Germany

-- max capacity 15 with current prototype compiler

def prev[T](events: Events[T]) = last(events , events)

def lookup(key: Events[Int], f: Events[Bool], size: Int):

(Events[Int], Events[Int]) = {

def l: Events[Int] = last(reg , key)

def add = f && l == -1

def found = l != -1 && key == l

def remove = !f && found

def reg = merge(if add then key else if remove then -1 else l, -1)

static if size == 0 then

(default(nil[Int], 0), filter(const(0, key), f))

else {

def result = lookup(key , f && !(add || found), size - 1)

(result ._1 + if reg != - 1 then 1 else 0, result ._2)

}

}

-- this macro is used for malloc () / free() examples , e.g. as

def mallocAddress = merge(in_malloc_0, in_malloc _1)

def freeAddress = merge(in_free_0, in_free _1)

def t = merge(mallocAddress , freeAddress)

def allocated = lookup(t, time(mallocAddress) == time(t), 15)

def changed = prev(allocated ._1) != allocated ._1

def doubleMalloc = !changed && time(mallocAddress) == time(t)

63

B. TeSSLa Language Snippets

Listing B.4: TeSSLa: fixed-capacity map
-- fixed -capacity map

-- an extension of the fixed -capacity set macro

-- max capacity 8 with current prototype compiler

-- limitation: keys and values must be > 0 at the moment

-- this macro is used for advanced TeSSLa examples

-- with event_handler test framework

--

-- input: if f == true: add key/value pair to map

-- false: lookup & removal of key

-- returns ._1: current map size

-- ._2: if f == true: always returns -2

-- false: returns value if key was found , 0 otherwise

-- ._3: 0 if overflow , nothing otherwise

-- version 2019 -07 -25

def lookup_map(key: Events[Int], value: Events[Int],

f: Events[Bool], capacity: Int):

(Events[Int], Events[Int], Events[Int]) = {

def lk: Events[Int] = last(regk , key)

def lv: Events[Int] = last(regv , key)

def add = f && lk == -1

def found = lk != -1 && key == lk

def remove = !f && found

def regk = merge(if add then key else if remove then -1 else lk , -1)

def regv = merge(if add then value else if remove then -1 else lv , -1)

static if capacity == 0 then

(default(nil[Int], 0), default(nil[Int], 0),

filter(const(0, key), f))

else {

def result = lookup_map(key , value , f && !(add || found),

capacity - 1)

(result ._1 + if regk != -1 then 1 else 0,

if lk == key then lv else

if result ._2 > 0 then result ._2 else -2,

result ._3)

}

}

64

Appendix C

Timestamp Driver

The timestamp driver (written in VHDL) is needed to push the processing in the TeSSLa
network forward even for inputs without events for longer periods of time. Despite
looking very simple now, there are subtle details that needed to be considered in the
implementation. It is part of a co-design of 3 modules: this timestamp driver, the new
MultiInputAdapter and modified InputAdapter in TeSSLa (subsection 5.2) for details.
The driver is embedded between the CS parsers (PTM, ITM, FTM) and their correspond-
ing asynchronous FIFOs to the TeSSLa specification.

Listing C.1: Timestamp driver
-- version 2019 -07 -18

library ieee;

use ieee.std_logic _1164. all;

use ieee.numeric_std.all;

entity tessla_timestamp_driver is

port (

-- control interface

CLK : in std_logic;

RST : in std_logic;

-- FIFO control signals (RST , WR_CLK , WR_RST_BUSY , FULL)

-- are connected outside of this module

-- input

IN_0_WR_EN : in std_logic;

IN_0_ DIN : in std_logic_vector (123 downto 0);

IN_1_WR_EN : in std_logic;

IN_1_ DIN : in std_logic_vector (123 downto 0);

IN_2_WR_EN : in std_logic;

IN_2_ DIN : in std_logic_vector (123 downto 0);

65

C. Timestamp Driver

IN_3_WR_EN : in std_logic;

IN_3_ DIN : in std_logic_vector (123 downto 0);

-- output:

OUT_0_WR_EN : out std_logic;

OUT_0_DIN : out std_logic_vector (123 downto 0);

OUT_1_WR_EN : out std_logic;

OUT_1_DIN : out std_logic_vector (123 downto 0);

OUT_2_WR_EN : out std_logic;

OUT_2_DIN : out std_logic_vector (123 downto 0);

OUT_3_WR_EN : out std_logic;

OUT_3_DIN : out std_logic_vector (123 downto 0)

);

end tessla_timestamp_driver;

architecture behavioral of tessla_timestamp_driver is

signal sync_needed : std_logic;

signal sync_in : std_logic_vector (123 downto 0);

signal sync_out : std_logic_vector (123 downto 0);

-- to have x clock cycles @ CS_PARSER_CLK use

-- x << 4, due to 4 bit timestamp extension

-- x should be > the number of cycles the longest parser needs to

-- process a frame

-- for compatibility , x should be a multiple of 4

-- currently x = 1024 => x << 4 = 16384

constant delta_t : unsigned (52 downto 0) := to_unsigned (16384 , 53);

-- mainly for debugging purpose

constant dummy_data : std_logic_vector (31 downto 0) := X"00C0FFEE";

-- tracking for the final push: somewhat arbitrary config

-- note: it will send the last seen timestamp + final_delta_t

-- as defined below

constant final_wait_t : natural := 12500000;

-- wait for 100 ms at 125 MHz

constant final_stop_t : natural := final_wait_t + 1;

signal final_wait_counter : natural;

-- just add 1 clock cycle to have an increment

-- thus: 1 << 4 = 16;

constant final_delta_t : unsigned (52 downto 0)

66

:= to_unsigned (16, 53);

signal final_last_timestamp : unsigned (52 downto 0);

signal final_needed : std_logic;

signal final_out : std_logic_vector (123 downto 0);

-- this method must match exactly the TeSSLa encoding used in the parsers

pure function extract_time(v : std_logic_vector (123 downto 0))

return unsigned is

variable r : unsigned (52 downto 0);

begin

r := unsigned(v(52 downto 0));

return r;

end;

-- this method must match exactly the TeSSLa encoding used in the parsers

pure function embed_time(t : unsigned (52 downto 0))

return std_logic_vector is

variable r : std_logic_vector (123 downto 0);

begin

r := (others => ’0’);

-- set address

r(122 downto 115) := X"FF"; -- default: 0xFF; for debugging: 0x03

-- set data

r(93 downto 62) := dummy_data;

-- set time

r(61) := ’1’;

r(52 downto 0) := std_logic_vector(t);

return r;

end;

pure function create_broom_wagon(v : std_logic_vector (123 downto 0))

return std_logic_vector is

variable r : std_logic_vector (123 downto 0);

variable t : unsigned (52 downto 0);

begin

t := extract_time(v);

if t > delta_t then

t := t - delta_t;

else

t := to_unsigned(1, 53);

end if;

r := embed_time(t);

67

C. Timestamp Driver

return r;

end;

begin

sync_needed <= IN_0_WR_EN or IN_1_WR_EN or IN_2_WR_EN or IN_3_WR_EN;

-- give priority to slower parsers because they have lower timestamps

-- 1. PTM

-- 2. FTM == ITM

sync_in <= IN_0_ DIN when IN_0_WR_EN = ’1’ else

IN_1_ DIN when IN_1_WR_EN = ’1’ else

IN_2_ DIN when IN_2_WR_EN = ’1’ else

IN_3_ DIN;

sync_out <= create_broom_wagon(sync_in);

OUT_0_WR_EN <= IN_0_WR_EN or sync_needed or final_needed;

OUT_1_WR_EN <= IN_1_WR_EN or sync_needed or final_needed;

OUT_2_WR_EN <= IN_2_WR_EN or sync_needed or final_needed;

OUT_3_WR_EN <= IN_3_WR_EN or sync_needed or final_needed;

OUT_0_DIN <= IN_0_DIN when IN_0_WR_EN = ’1’ else

sync_out when sync_needed = ’1’ else final_out;

OUT_1_DIN <= IN_1_DIN when IN_1_WR_EN = ’1’ else

sync_out when sync_needed = ’1’ else final_out;

OUT_2_DIN <= IN_2_DIN when IN_2_WR_EN = ’1’ else

sync_out when sync_needed = ’1’ else final_out;

OUT_3_DIN <= IN_3_DIN when IN_3_WR_EN = ’1’ else

sync_out when sync_needed = ’1’ else final_out;

track_time : process(CLK) is

begin

if rising_edge(CLK) then

if RST = ’1’ then

-- tracking

final_last_timestamp <= (others => ’0’);

final_wait_counter <= 0;

-- output

final_needed <= ’0’;

final_out <= (others => ’0’);

else

if sync_needed = ’1’ then

final_last_timestamp <= extract_time(sync_in);

final_wait_counter <= 0;

68

else

if final_wait_counter = final_wait_t then

final_needed <= ’1’;

final_out <= embed_time(final_last_timestamp

+ final_delta_t);

final_wait_counter <= final_wait_counter + 1;

elsif final_wait_counter = final_stop_t then

final_needed <= ’0’;

else

final_wait_counter <= final_wait_counter + 1;

end if;

end if;

end if;

end if;

end process;

end behavioral;

69

Appendix D

trace launch Options

trace launch is the central program for CoreSight configuration, binary start with op-
tional instrumentation, and output collection during/after the run. Configuration options
are shown in Listing D.1.

Listing D.1: trace launch options
Usage: trace_launch [-t] [-d] [-b] [-p] [-z] [-c <nr >] [-s <nr >]

[-P] [-I] [-F] [-T] [-i <init.cx >]

[-o <output dir >] <program to launch > [<arg >, ...]

main config

-t Route trace via TPIU , not ETB.

-d Enable verbose debugging output.

-b Disable branch broadcast (default is ON)

-p Disable processID/contextID matching (default ON is optimal for

single -threaded programs; OFF is better for multi -threaded

programs (memo: pthread)

-z online (’infinity ’) mode; automatically activates -t;

continuously read output FIFO to <output dir >/ cstrace.bin

core nr and sync period settings

-c use core <nr> for <program to launch >; can be used multiple

times (set of cores); core affinity is set to traceable

cores , if not defined

-s TPIU synchronization every <nr > CS frames [1, 4096];

default 64 corresponds to once per 1024 B

trace collection config

-P Enable LD_PRELOAD instrumentation wrapper for <program >;

also activates -I; trace_launch must be launched with

build folder as PWD (memo: PRELOAD)

-I Enable ITM

-F Enable FTM: activates both , CS FTM source input and FTM packet

generation on FPGA board via zynq_emio_ctrl driver

71

D. trace launch Options

path settings

-i <init.cx> bytecode file of a CS configuration;

value of ENV variable INIT_CS_FILENAME is used if not provided

ENV variable is required for -P option

-o <output dir >: this folder is created; output files go there

72

Appendix E

Instrumentation Library

Instrumented library functions of glibc:

• from malloc.h including workaround memory allocator during init phase: malloc,
calloc, realloc, free

• from malloc.h without workaround: reallocarray, memalign, valloc, pvalloc

• from pthread.h: pthread create to create thread ID mapping

• from pthread.h: mutex and rwlock functions

• from pthread.h: optional spinlock functions (inactive in default setting)

• from pthread.h: barrier wait

73

Appendix F

Programs for Trace Validation

Listing F.1: Test program: nested malloc
#include <malloc.h>

#include <stdio.h>

#define N 12

#define ALLOC_SIZE 4096

void allocate(int n) {

if (n <= 0) return;

int *m = malloc(ALLOC_SIZE);

if (m == NULL) {

printf("error: no malloc\n");

return;

}

#ifndef QUIET

printf("n %d; stack address &m %p; allocated heap address m %p\n",

n, &m, m);

#endif

allocate(n-1);

free(m);

#ifndef QUIET

printf("n=%d; free(m)\n", n);

#endif

}

int main(void) {

#ifndef QUIET

printf("main() at %p\n"

"allocate () at %p\n"

"malloc () at %p\n"

"free() at %p\n",

main , allocate , malloc , free);

#endif

75

F. Programs for Trace Validation

allocate(N);

return 0;

}

Listing F.2: Relevant TeSSLa snippet used for nested malloc
def etm0_addr_time = time(etm0_addr)

def etm1_addr_time = time(etm1_addr)

def etm0_addr_delta = etm0_addr_time - last(etm0_addr_time , etm0_addr)

def etm1_addr_delta = etm1_addr_time - last(etm1_addr_time , etm1_addr)

def etm0_ contextid_time = time(etm0_ value1_ contextid)

def etm1_ contextid_time = time(etm1_ value1_ contextid)

def etm0_ contextid_delta = etm0_ contextid_time -

last(etm0_ contextid_time , etm0_ value1_ contextid)

def etm1_ contextid_delta = etm1_ contextid_time -

last(etm1_ contextid_time , etm1_ value1_ contextid)

def count[A](a: Events[A]) := c where {

def c: Events[Int] := merge(last(c, a) + 1, 0)

}

def etm0_addr_count = count(etm0_addr)

def etm1_addr_count = count(etm1_addr)

def etm0_ contextid_count = count(etm0_ value1_ contextid)

def etm1_ contextid_count = count(etm1_ value1_ contextid)

def malloc_count = count(in_malloc)

def free_count = count(in_free)

def barrier_count = count(in_barrier_wait)

-- counts only mutex locks; other lock types work identically

-- option: signals can be merged before processing , if desired

def lock_request_count = count(in_lock_request)

def lock_acquired_count = count(in_lock_acquired)

def unlock_count = count(in_unlock)

-- output example: many values are reported here for testing;

-- typical specs may have fewer outputs

def output 000 = etm0_addr

def output 001 = etm0_addr_count

def output 002 = etm0_ contextid_count

76

def output 003 = etm0_ thread_id

def output 004 = etm0_asid

def output 005 = etm1_addr

def output 006 = etm1_addr_count

def output 007 = etm1_ contextid_count

def output 008 = etm1_ thread_id

def output 009 = etm1_asid

-- use -t flag in parse_tessla_output for time output streams

def output 010 = etm0_addr_delta

def output 011 = etm1_addr_delta

def output 012 = etm0_ contextid_delta

def output 013 = etm1_ contextid_delta

-- arbitrary values can be transmitted via ITM; see test/itm_test program;

-- show selection here

def output 014 = itm_value20

def output 015 = itm_value21

def output 016 = itm_value22

def output 017 = itm_value23

def output 018 = itm_value24

def output 019 = itm_value25

def output 020 = ftm_value0

-- mapped instrumentation interface

def output 021 = in_malloc

def output 022 = in_free

def output 023 = in_lock_request

def output 024 = in_lock_acquired

def output 025 = in_lock_not_acquired

def output 026 = in_unlock

def output 027 = in_rd_lock_request

def output 028 = in_rd_lock_acquired

def output 029 = in_rd_lock_not_acquired

def output 030 = in_wr_lock_request

def output 031 = in_wr_lock_acquired

def output 032 = in_wr_lock_not_acquired

def output 033 = in_barrier_wait

def output 034 = in_lock_request_tid

def output 035 = in_lock_request_addr

def output 036 = in_lock_acquired_tid

def output 037 = in_lock_acquired_addr

def output 038 = in_unlock_tid

def output 039 = in_unlock_addr

77

F. Programs for Trace Validation

def output 040 = in_info

def output 041 = in_error

def output 042 = malloc_count

def output 043 = free_count

def output 044 = barrier_count

def output 045 = lock_request_count

def output 046 = lock_acquired_count

def output 047 = unlock_count

-- TeSSLa system info / error messages

def output 048 = etm0_ value3_ error

def output 049 = etm1_ value3_ error

def output 050 = ftm_value3_ error

def output 051 = itm_value 32_ error

78

Bibliography

[1] Jonathan Anderson, Robert N. M. Watson, David Chisnall, Khilan Gudka, Brooks
Davis, and Ilias Marinos. TESLA: Temporally enhanced system logic assertions. Pro-
ceedings of the 9th European Conference on Computer Systems, EuroSys 2014, 2014.

[2] ARM. CoreSight Components Technical Reference Manual. reference DDI 0314H, ARM
Ltd., 2009.

[3] ARM. CoreSight Program Flow Trace Architecture Specification. reference IHI 0035B,
ARM Ltd., 2011.

[4] ARM. ARM Embedded Trace Macrocell Architecture Specification. reference IHI 0064D,
ARM Ltd., 2016.

[5] ARM. ARM CoreSight Architecture Specification. reference IHI 0029E, ARM Ltd., 2017.

[6] ARM. CoreSight Access Library (CSAL), 2017. https://github.com/ARM-software/
CSAL, accessed: 2019-08-07.

[7] Rico Backasch, Christian Hochberger, Alexander Weiss, Martin Leucker, and Richard
Lasslop. Runtime Verification for Multicore SoC with High-quality Trace Data. ACM
Trans. Des. Autom. Electron. Syst., 18(2):18:1–18:26, April 2013.

[8] Zaheer Chothia, John Liagouris, Frank McSherry, and Timothy Roscoe. Explaining
Outputs in Modern Data Analytics. Proc. VLDB Endow., 9(12):1137–1148, August
2016.

[9] David Cock. Litmus Testing at Rack Scale. The 2016 Workshop on Multicore and
Rack-scale Systems MaRS’16 at EuroSys 2016, 2016.

[10] Lukas Convent, Sebastian Hungerecker, Martin Leucker, Torben Scheffel, Malte
Schmitz, and Daniel Thoma. TeSSLa: Temporal Stream-Based Specification Lan-
guage. In Tiago Massoni and Mohammad Reza Mousavi, editors, Formal Methods:
Foundations and Applications, pages 144–162, Cham, 2018. Springer International Pub-
lishing.

79

https://github.com/ARM-software/CSAL
https://github.com/ARM-software/CSAL

Bibliography

[11] Lukas Convent, Sebastian Hungerecker, Torben Scheffel, Malte Schmitz, Daniel
Thoma, and Alexander Weiss. Hardware-Based Runtime Verification with Embed-
ded Tracing Units and Stream Processing. In Christian Colombo and Martin Leucker,
editors, Runtime Verification, pages 43–63, Cham, 2018. Springer International Publish-
ing.

[12] B. D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson, B. Finkbeiner, H. B.
Sipma, S. Mehrotra, and Z. Manna. LOLA: runtime monitoring of synchronous
systems. In 12th International Symposium on Temporal Representation and Reasoning
(TIME’05), pages 166–174, June 2005.

[13] Edsger W. Dijkstra. Software Engineering Techniques. Report on a conference in Rome,
Italy October 27 to 31, 1969 sponsored by the NATO Science Committee, page 16, 1969.

[14] Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer, and Hazem Torfah. A
Stream-Based Specification Language for Network Monitoring. In Yliès Falcone and
César Sánchez, editors, Runtime Verification, pages 152–168, Cham, 2016. Springer
International Publishing.

[15] S. Di Girolamo, P. Schmid, T. Schulthess, and T. Hoefler. SimFS: A Simulation Data
Virtualizing File System Interface. In 33rd IEEE International Parallel & Distributed
Processing Symposium (IPDPS’19). IEEE, May 2019.

[16] Enzian group. Enzian System, 2018. http://enzian.systems, accessed: 2019-08-07.

[17] Dilian Gurov, Klaus Havelund, Marieke Huisman, and Rosemary Monahan. Static
and Runtime Verification, Competitors or Friends? ISoLA 2016, LNCS 9952, pages
397–401, 2016.

[18] Troy D. Hanson and Arthur O’Dwyer. uthash, 2006. https://troydhanson.github.
io/uthash/, accessed: 2019-08-07.

[19] K. Havelund and G. Rosu. Monitoring Java Programs with Java PathExplorer. First
Workshop on Runtime Verification (RV’01). Theoretical Computer Science, 55(1), 2001.

[20] IEEE. IEEE Standard for System, Software, and Hardware Verification and Valida-
tion. IEEE Std 1012-2016 (Revision of IEEE Std 1012-2012/ Incorporates IEEE Std 1012-
2016/Cor1-2017), pages 1–260, Sep. 2017.

[21] Intel. Processor Tracing, 2013. https://software.intel.com/en-us/blogs/2013/

09/18/processor-tracing, accessed: 2019-08-07.

[22] Stefan Jaksic, Ezio Bartocci, Radu Grosu, Reinhard Kloibhofer, Thang Nguyen, and
Dejan Nickovie. From signal temporal logic to FPGA monitors. In MEMCOD, pages
218–227, 09 2015.

[23] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Nor-
rish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal Verification

80

http://enzian.systems
https://troydhanson.github.io/uthash/
https://troydhanson.github.io/uthash/
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing

Bibliography

of an OS Kernel. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 207–220, New York, NY, USA, 2009. ACM.

[24] Yongje Lee, Jinyong Lee, Ingoo Heo, Dongil Hwang, and Yunheung Paek. Using
CoreSight PTM to Integrate CRA Monitoring IPs in an ARM-Based SoC. ACM Trans.
Des. Autom. Electron. Syst., 22(3):52:1–52:25, April 2017.

[25] Martin Leucker. Teaching Runtime Verification. In Sarfraz Khurshid and Koushik
Sen, editors, Runtime Verification, pages 34–48, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[26] Linaro. OpenCSD - An open source CoreSight Trace Decode library, 2015. https:

//github.com/Linaro/OpenCSD, accessed: 2019-08-07.

[27] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems - Safety.
Springer, 1995.

[28] Rene Mueller, Jens Teubner, and Gustavo Alonso. Data Processing on FPGAs. Proc.
VLDB Endow., 2(1):910–921, August 2009.

[29] Andrei Pârvu. Program Trace Capture and Analysis for ARM. ETH Zürich, Systems
Group, Master’s Thesis Nr. 153 supervised by Prof. Timothy Roscoe and Dr. David
Cock, 2016.

[30] Albert Schulz. Implementierung eines TPIU-Streamdekoders in VHDL, 2016. presen-
tation, https://tu-dresden.de/ing/informatik/ti/vlsi/ressourcen/dateien/

dateien_studium/dateien_lehstuhlseminar/vortraege_lehrstuhlseminar/

folder-2016-04-20-4701759038/presentation.pdf?lang=de, accessed: 2019-08-
07.

[31] Muhammad Abdul Wahab, Pascal Cotret, Mounir Nasr Allah, Guillaume Hiet,
Arnab Kumar Biswas, Vianney Lapôtre, and Guy Gogniat. A novel lightweight
hardware-assisted static instrumentation approach for ARM SoC using debug com-
ponents. CoRR, abs/1812.01667, 2018.

[32] C. Watterson and D. Heffernan. Runtime verification and monitoring of embedded
systems. IET Software, 1:172–179(7), October 2007.

[33] Xilinx. AXI Reference Guide. reference UG761, Xilinx Ltd., 2012.

[34] Xilinx. Vivado Design Suite 7 Series FPGA and Zynq-7000 All Programmable SoC Libraries
Guide. reference UG953, Xilinx Ltd., 2017.

[35] Xilinx. Zynq-7000 SoC Technical Reference Manual. reference UG585, Xilinx Ltd., 2018.

[36] Xilinx. ZC706 evaluation board for the Zynq-7000 XC7Zo45 SoC User Guide. reference
UG954, Xilinx Ltd., 2019.

81

https://github.com/Linaro/OpenCSD
https://github.com/Linaro/OpenCSD
https://tu-dresden.de/ing/informatik/ti/vlsi/ressourcen/dateien/dateien_studium/dateien_lehstuhlseminar/vortraege_lehrstuhlseminar/folder-2016-04-20-4701759038/presentation.pdf?lang=de
https://tu-dresden.de/ing/informatik/ti/vlsi/ressourcen/dateien/dateien_studium/dateien_lehstuhlseminar/vortraege_lehrstuhlseminar/folder-2016-04-20-4701759038/presentation.pdf?lang=de
https://tu-dresden.de/ing/informatik/ti/vlsi/ressourcen/dateien/dateien_studium/dateien_lehstuhlseminar/vortraege_lehrstuhlseminar/folder-2016-04-20-4701759038/presentation.pdf?lang=de

	List of Figures
	List of Tables
	Listings
	Introduction
	Focus
	Main contributions
	Thesis layout

	Background
	Runtime verification
	ARM CoreSight
	TeSSLa: Temporal Stream-based Specification Language
	CPU/FPGA hybrid systems
	FPGA characteristics that affect the design of the RV system
	Zynq board
	Enzian system

	Instrumentation

	Related Work
	Existing tracing and runtime verification infrastructure
	TeSSLa implementations
	Other CPU/FPGA hybrid implementations
	Other runtime verification systems
	Other verification systems

	Design
	Design overview
	FPGA: design constraints and design decisions
	Online and distributed runtime verification
	AXI/TPIU controller and driver
	CoreSight parsers
	Timestamp driver and interface to TeSSLa
	TeSSLa specification
	Software tooling
	Instrumentation library

	Implementation
	CoreSight parsers
	CS frame synchronizer and parser
	PTM parser
	ITM parser
	FTM parser

	Timestamp driver
	TeSSLa specification
	Some technical details of the inner working of TeSSLa on FPGA
	TeSSLa compiler
	MultiInputAdapter
	OutputFilterAdapter

	AXI/TPIU controller and driver
	Software tooling
	Instrumentation library

	Evaluation and Benchmarking
	Methods
	CoreSight configuration

	CS parser validation
	Instrumentation validation and benchmarking
	Validation
	Benchmarking

	Runtime verification with TeSSLa specifications
	Summary

	Discussion
	Instrumentation overhead
	Limitations of the TeSSLa compiler prototype
	Related work
	Future work
	Runtime verification of CPU/FPGA hybrid applications
	Migration path to ThunderX / Enzian
	TeSSLa to Verilog compiler

	Conclusion
	Appendices
	Reference TeSSLa Interfaces
	TeSSLa Language Snippets
	Timestamp Driver
	trace_launch Options
	Instrumentation Library
	Programs for Trace Validation
	Bibliography

