
Advanced Systems Lab Report
Autumn Semester 2018

Name: Pirmin Schmid

Appendix to the report

0 20 40 60 80 100
Time (s)

0

10

20

30

40

50

60

Ti
m

e
[m

s]

Times: set, 192 clients, 16 workers, 3 servers

ResponseTime
QueueingTime
ServiceTime
ProcessingTime
ServersOverallResponseTime
ServersNettoResponseTime
ServerRttMax
ClientRTTAndProcessingTime

Version: 17.12.2018 1

Contents

Appendices 2

A Appendix to section 1: system overview 2
A.1 Appendix to 1.3: Middleware . 2
A.2 Appendix to 1.7.2: Operational laws . 2

B Appendix to section 2: Baseline without middleware 4
B.1 Appendix to 2.1: One server . 4
B.2 Appendix to 2.2: Two servers . 4

C Appendix to section 4: throughput for writes 5
C.1 Appendix to 4.1: Summary: Example dynamic change in the system 5
C.2 Appendix to 4.2: Summary: Additional experiment e820 6

Appendices

A Appendix to section 1: system overview

A.1 Appendix to 1.3: Middleware

Implementation guarantees Explicitly, the middleware implementation assures the sequen-
tial execution of all steps in the correct designated thread (see details in 1.3.1) as defined in the
project description and required for modeling.

• All client connections are accepted in the ClientThread.

• Each request from all clients is read and fully parsed in the ClientThread before being
enqueued as a job.

• Memtier already guarantees that a virtual client does not send a fresh request before it
has received the reply to the former request.

• Blocking functions are used to avoid any busy polling/idling in the threads: selector.select()
for network I/O and queue.take() to dequeue a job from the queue.

• A worker works only on one job at a time (despite the fact that typical async NIO could
and would handle more than one job at a time).

• The following sequence is guaranteed in workers: (1) job type is recognized and then
handled properly; (2) all requests are sent to servers (1-3 dependent on experiment con-
figuration and job type); (3) the worker waits for server replies and parses them; (4) only
after having received all replies, the worker sends the reply to the client; (5) instrumenta-
tion data is processed; (6) worker state is reset to be ready to dequeue a new job.

A.2 Appendix to 1.7.2: Operational laws

Used variables Table 1 explains the variables used for utilization and bottleneck analysis in
sections 2-6 based on operational laws. Asymptotic bounds can be used to find the knee in the
throughput graphs and to define N∗ = D+Z

Dmax
at the knee.1 But they are not useful in finding

1 ”If the number of jobs is more than N∗, then we can say with certainty that there is queueing somewhere
in the system”, page 565 in [1]

Appendix 2

Table 1: Variables of the operational laws, from box 33.1 [1], extended and with comments

Variable Explanation

Di total service demand per job for device i a, = Si · Vi

D sum of service demands on all devices, =
∑

iDi

Dmax service demand on the bottleneck device, = maxi{Di}
N number of jobs in the system (≈ number of load generating virtual clients b)
Qi number of jobs c in device i
R system response time
Ri response time per visit to device i
Si service time d per visit to device i
S total service time per job for all visited devices, =

∑
i Si

Ui utilization d of device i
Umax utilization of the bottleneck device
Vi number of visits per job to device i, in (0.0, 1.0] for the systems under test
X system throughput
Xi throughput of device i
Xmax max. observed throughput in a window
Xnetwork limit added: max. possible throughput due to network bandwidth limitation (policy) e

Z thinking time
a in the report, i refers to client, middleware, server (only one instance or average).
b ≈ is used instead of = in case multiple clients are processing replies/preparing new jobs at the same
time; for all discussion in the report = is assumed.
c this includes both, jobs in the queue of this device and jobs being processed by worker threads of this
device
d there are 2 views for the middleware: (1) use ServiceT ime as measured in the middleware, which covers
also all waiting time for the replies of the servers; (2) detailed bottleneck analysis for middleware and
server instances, and the network connection between them, which is more informative, used in the report
and described below.
e using 4096 + 20 bytes (see protocol overhead)

the saturation of the more complex systems with middleware, where it is not of interest whether
any queueing starts in the system but interested to see when relevant queueing starts in the
middleware.

Number of jobs in the system In the closed system under test, the number of jobs in
the system can be considered to be equal to the number of virtual clients (Table 1 comment
b). With given latencies and payload size, only few are in transit in the network2 Some are in
the queue middleware. However, many jobs are ”in” the workers of the middleware, which is
relevant in particular for configurations with lots of worker threads. This explains why doubling
the number of workers needs more clients (= more jobs) before queueing can be observed in the
middleware (see e.g. subsection 3.1).

2 As an approximation, a 100 Mbit/s bandwidth network connection may contain up to 1.5 requests with 4
KiB payload; connections with larger bandwidths accordingly more.

Appendix 3

B Appendix to section 2: Baseline without middleware

B.1 Appendix to 2.1: One server

Table 2: Operational laws variables: knee and device utilization bounds one server

Variable Calculation write-only (set) read-only (get)

network bandwidth limit 3 x 200 Mbit/s 1 x 100 Mbit/s
deduced Xnetwork limit 18.2 kop/s 3.0 kop/s

Z configuration 0.0 ms 0.0 ms
Xmax

a measured 16.2 kop/s 3.5 kop/s
Rmin

a measured 0.825 ms 1.875 ms

Dmax
1

Xmax
0.062 ms 0.289 ms

Dclient,uc
b,c IL 0.007 ms 0.003 ms

Dserver
d Dmax = 0.062 ms ≤ Dmax = 0.289 ms e

”Dnetwork limit” 0.055 ms 0.329 ms
D f ≤ Rmin 0.825 ms 1.875 ms

N∗ D+Z
Dmax

≤ 13.3 ≤ 6.5

Nuc
c see report Figure 6 (a) 72 (V C = 12) 6 (V C = 1)

X(Nuc)
c measured 14.071 ± 0.270 kop/s 2.954 ± 0.008 kop/s

R(Nuc)
c measured 5.076 ± 0.114 ms 2.015 ± 0.006 ms

Uclient,uc
c X(Nuc) ∗Dclient 10 % 0.8 %

Userver,uc
c,d X(Nuc) ∗Dserver 87 % (bottleneck) ≤ 85 % g

”Unetwork limit,uc”
c X(Nuc) ∗Dnetwork limit 77 % 97 % (bottleneck)

CPU usageclient,uc
c measured 15.1 ± 0.8 % 5.2 ± 0.1 %

CPU usageserver,uc
c measured 87.5 ± 1.9 % 10.4 ± 0.7 %

a measured in at least one 1 s window; average throughput is lower; average response time is longer
b Dclient ≈ Rclient,expected−Rclient,measured (increasing for increasing number of virtual clients per thread)
and conceptually Dclient ≤ Dserver ≤ Dmax in this setting
c uc stands for usable capacity
d including receiving network stack, memcached service, sending network stack (bandwidth limit) of the
server; detailed view of Dmemcached would be lower
e Dserver without the network send bandwidth limitation would be lower, probably much closer to Dserver

of the set operations (see discussion)
f D is defined as

∑
i Di for all devices i, which includes client, server, network connections here; due to

limited availability of Sclient and Sserver, that are already approximated, this sum would be associated with
large error margins; thus, the following bound is used D ≤ S ≤ Rmin (see subsection 1.7)
g this is a clear over-estimation due to coupling with bandwidth limit policy; Userver,uc (for kernel and
memcached) is closer to 18 % using Dserver for write-only; see also CPU usage

Table with detailed calculations for operational laws, including utilization and bottleneck
analysis (Table 2).

B.2 Appendix to 2.2: Two servers

See Table 3
Table with detailed calculations for operational laws, including utilization and bottleneck

analysis (Table 3). Note: the conceptually correct Uclient,bound (≤ 74 %) overestimates the client
utilization, and Uclient,uc (2 %) probably underestimates client utilization due to noise in the
used raw values for calculation creating only a wide bounding interval [2, 74] %.

Appendix 4

Table 3: Operational laws variables: knee and device utilization bounds two servers, one client

Variable Calculation write-only (set) read-only (get)

network bandwidth limit 1 x 200 Mbit/s 2 x 100 Mbit/s
deduced Xnetwork limit 6.1 kop/s 6.1 kop/s

Z configuration 0.0 ms 0.0 ms
Xmax

a measured 8.0 kop/s 6.1 kop/s
Rmin

a measured 0.734 ms 0.698 ms

Dmax
1

Xmax
0.125 ms 0.163 ms

Dclient,uc
b,c IL 0.003 ms 0.005 ms

Dclient,bound
d ≤ Dmax = 0.125 ms ≤ Dmax = 0.163 ms

Dserver
e,f ≤ Dclient,bound ≤ Dclient,bound

”Dnetwork limit” 0.165 ms 0.165 ms
D g ≤ Rmin 0.734 ms 0.698 ms

N∗ D+Z
Dmax

≤ 5.9 ≤ 4.3

Nuc
c see report Figure 6 (b) 6 (V C = 3) 6 (V C = 3)

X(Nuc)
c measured 5.956 ± 0.024 kop/s 5.830 ± 0.017 kop/s

R(Nuc)
c measured 1.001 ± 0.005 ms 1.019 ± 0.008 ms

Uclient,uc
c X(Nuc) ∗Dclient 2 % 3 %

Uclient,bound
c,e X(Nuc) ∗Dclient,bound ≤ 74 % h ≤ 95 % h

Userver,uc
c,e X(Nuc) ∗Dserver ≤ 74 % h ≤ 95 % h

”Unetwork limit,uc”
c X(Nuc) ∗Dnetwork limit 98 % (bottleneck) 96 % (bottleneck)

CPU usageclient,uc
c measured 17.3 ± 0.2 % 21.7 ± 0.5 %

CPU usageserver,uc
c measured 9.8 ± 0.2 % 9.5 ± 0.2 %

a measured in at least one 1 s window; average throughput is lower; average response time is longer
b Dclient ≈ Rclient,expected−Rclient,measured (increasing for increasing number of virtual clients per thread)
c uc stands for usable capacity
d upper bound for Dclient including receiving network stack, memtier service, sending network stack
(bandwidth limit) of the client VM; see conceptually Dserver ≤ Dclient ≤ Dmax in this setting; however,
clear over-estimations due to network bandwidth limitations
e including receiving network stack, memcached service, sending network stack (bandwidth limit) of the
server; detailed view of Dmemcached would be lower
f these deduced upper bounds are very clear over-estimations; see also conceptually Dserver ≤ Dclient ≤
Dmax in this setting
g D is defined as

∑
i Di for all devices i, which includes client, server, network connections here; due to

limited availability of Sclient and Sserver, that are already approximated, this sum would be associated
with large error margins; thus, the following bound is used D ≤ S ≤ Rmin
h both upper bounds are clear over-estimation due to coupling with bandwidth limit policy; Uclient,bound

is closer to Uclient,uc; Userver,uc (for kernel and memcached) is closer to 18 % (see write-only of subsection
2.1; see also CPU usage)

C Appendix to section 4: throughput for writes

C.1 Appendix to 4.1: Summary: Example dynamic change in the system

An example of a dynamic change in the system. Small change in server RTT has much larger
effect on middleware response time due to longer queue (Figure 1). Discussion in the report in
detail.

Appendix 5

0 20 40 60 80 100
Time (s)

0

10

20

30

40

50

60
Ti

m
e

[m
s]

Times: set, 192 clients, 16 workers, 3 servers

ResponseTime
QueueingTime
ServiceTime
ProcessingTime
ServersOverallResponseTime
ServersNettoResponseTime
ServerRttMax
ClientRTTAndProcessingTime

Figure 1: Detailed time measurements in the middleware. Experiment with 192 clients, 16
worker threads (WT=8), 3 servers

C.2 Appendix to 4.2: Summary: Additional experiment e820

Extended experiment e820 with 64, 128, 192, 256 workers (WT=32, 64, 96, 128): Figure 2.

References

[1] Jain R. The Art of Computer Systems Performance Analysis. 1st ed. Wiley Professional
Computing, 1991

Appendix 6

1224 48 72 96 144 192 288 384
Total number of clients

0

2

4

6

8

10

12

14

Th
ro

ug
hp

ut
 [k

op
/s

]

Throughput: set, 3 servers

64 workers (WT=32)
expected by IL: 64 workers (WT=32)
128 workers (WT=64)
expected by IL: 128 workers (WT=64)
192 workers (WT=96)
expected by IL: 192 workers (WT=96)
256 workers (WT=128)
expected by IL: 256 workers (WT=128)

(a) Throughput

1224 48 72 96 144 192 288 384
Total number of clients

0

5

10

15

20

25

30

35

Re
sp

on
se

 ti
m

e
[m

s]

Response time: set, 3 servers
64 workers (WT=32)
expected by IL: 64 workers (WT=32)
128 workers (WT=64)
expected by IL: 128 workers (WT=64)
192 workers (WT=96)
expected by IL: 192 workers (WT=96)
256 workers (WT=128)
expected by IL: 256 workers (WT=128)

(b) Response time

0 2 4 6 8 10 12 14
Throughput [kop/s]

0

5

10

15

20

25

30

35

Re
sp

on
se

 ti
m

e
[m

s]

Throughput vs response time: set, 3 servers
64 workers (WT=32)
128 workers (WT=64)
192 workers (WT=96)
256 workers (WT=128)

(c) Throughput vs response time

1224 48 72 96 144 192 288 384
Total number of clients

0

10

20

30

40

50

Re
sp

on
se

 ti
m

e
[m

s]

Response time: set, mn_192

p99
p95
p90
p75
mean
median
p25

(d) Response time percentiles (WT=96)

Figure 2: Write-only workload: 2 middleware and 3 memcached server instances; extended
experiment e820 with WT=32, 64, 96, 128

Appendix 7

	Appendices
	Appendix to section 1: system overview
	Appendix to 1.3: Middleware
	Appendix to 1.7.2: Operational laws

	Appendix to section 2: Baseline without middleware
	Appendix to 2.1: One server
	Appendix to 2.2: Two servers

	Appendix to section 4: throughput for writes
	Appendix to 4.1: Summary: Example dynamic change in the system
	Appendix to 4.2: Summary: Additional experiment e820

